Surface Analysis
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Mechanical engineering > Surface Analysis: The Principal Techniques
Surface Analysis: The Principal Techniques

Surface Analysis: The Principal Techniques


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This completely updated and revised second edition of Surface Analysis: The Principal Techniques, deals with the characterisation and understanding of the outer layers of substrates, how they react, look and function which are all of interest to surface scientists. Within this comprehensive text, experts in each analysis area introduce the theory and practice of the principal techniques that have shown themselves to be effective in both basic research and in applied surface analysis. Examples of analysis are provided to facilitate the understanding of this topic and to show readers how they can overcome problems within this area of study.

Table of Contents:
List of Contributors xv Preface xvii 1 Introduction 1 John C. Vickerman 1.1 How do we Define the Surface? 1 1.2 How Many Atoms in a Surface? 2 1.3 Information Required 3 1.4 Surface Sensitivity 5 1.5 Radiation Effects – Surface Damage 7 1.6 Complexity of the Data 8 2 Auger Electron Spectroscopy 9 Hans Jörg Mathieu 2.1 Introduction 9 2.2 Principle of the Auger Process 10 2.2.1 Kinetic Energies of Auger Peaks 11 2.2.2 Ionization Cross-Section 15 2.2.3 Comparison of Auger and Photon Emission 16 2.2.4 Electron Backscattering 17 2.2.5 Escape Depth 18 2.2.6 Chemical Shifts 19 2.3 Instrumentation 21 2.3.1 Electron Sources 22 2.3.2 Spectrometers 24 2.3.3 Modes of Acquisition 24 2.3.4 Detection Limits 29 2.3.5 Instrument Calibration 30 2.4 Quantitative Analysis 31 2.5 Depth Profile Analysis 33 2.5.1 Thin Film Calibration Standard 34 2.5.2 Depth Resolution 36 2.5.3 Sputter Rates 37 2.5.4 Preferential Sputtering 40 2.5.5 λ-Correction 41 2.5.6 Chemical Shifts in AES Profiles 42 2.6 Summary 43 References 44 Problems 45 3 Electron Spectroscopy for Chemical Analysis 47 Buddy D. Ratner and David G. Castner 3.1 Overview 47 3.1.1 The Basic ESCA Experiment 48 3.1.2 A History of the Photoelectric Effect and ESCA 48 3.1.3 Information Provided by ESCA 49 3.2 X-ray Interaction withMatter, the Photoelectron Effect and Photoemission from Solids 50 3.3 Binding Energy and the Chemical Shift 52 3.3.1 Koopmans’ Theorem 53 3.3.2 Initial State Effects 53 3.3.3 Final State Effects 57 3.3.4 Binding Energy Referencing 58 3.3.5 Charge Compensation in Insulators 60 3.3.6 Peak Widths 61 3.3.7 Peak Fitting 62 3.4 Inelastic Mean Free Path and Sampling Depth 63 3.5 Quantification 67 3.5.1 Quantification Methods 68 3.5.2 Quantification Standards 70 3.5.3 Quantification Example 71 3.6 Spectral Features 73 3.7 Instrumentation 80 3.7.1 Vacuum Systems for ESCA Experiments 80 3.7.2 X-ray Sources 82 3.7.3 Analyzers 84 3.7.4 Data Systems 86 3.7.5 Accessories 88 3.8 Spectral Quality 88 3.9 Depth Profiling 89 3.10 X–Y Mapping and Imaging 94 3.11 Chemical Derivatization 96 3.12 Valence Band 96 3.13 Perspectives 99 3.14 Conclusions 100 Acknowledgements 101 References 101 Problems 109 4 Molecular Surface Mass Spectrometry by SIMS 113 John C. Vickerman 4.1 Introduction 113 4.2 Basic Concepts 116 4.2.1 The Basic Equation 116 4.2.2 Sputtering 116 4.2.3 Ionization 121 4.2.4 The Static Limit and Depth Profiling 123 4.2.5 Surface Charging 124 4.3 Experimental Requirements 125 4.3.1 Primary Beam 125 4.3.2 Mass Analysers 131 4.4 Secondary Ion Formation 140 4.4.1 Introduction 140 4.4.2 Models of Sputtering 143 4.4.3 Ionization 149 4.4.4 Influence of the Matrix Effect in Organic Materials Analysis 151 4.5 Modes of Analysis 155 4.5.1 Spectral Analysis 155 4.5.2 SIMS Imaging or Scanning SIMS 166 4.5.3 Depth Profiling and 3D Imaging 173 4.6 Ionization of the Sputtered Neutrals 183 4.6.1 Photon Induced Post-Ionization 184 4.6.2 Photon Post-Ionization and SIMS 190 4.7 Ambient Methods of Desorption Mass Spectrometry 194 References 199 Problems 203 5 Dynamic SIMS 207 David McPhail and Mark Dowsett 5.1 Fundamentals and Attributes 207 5.1.1 Introduction 207 5.1.2 Variations on a Theme 211 5.1.3 The Interaction of the Primary Beam with the Sample 214 5.1.4 Depth Profiling 217 5.1.5 Complimentary Techniques and Data Comparison 224 5.2 Areas and Methods of Application 226 5.2.1 Dopant and Impurity Profiling 226 5.2.2 Profiling High Concentration Species 227 5.2.3 Use of SIMS in Near Surface Regions 230 5.2.4 Applications of SIMS Depth Profiling in Materials Science 233 5.3 Quantification of Data 233 5.3.1 Quantification of Depth Profiles 233 5.3.2 Fabrication of Standards 239 5.3.3 Depth Measurement and Calibration of the Depth Scale 241 5.3.4 Sources of Error in Depth Profiles 242 5.4 Novel Approaches 246 5.4.1 Bevelling and Imaging or Line Scanning 246 5.4.2 Reverse-Side Depth Profiling 250 5.4.3 Two-Dimensional Analysis 251 5.5 Instrumentation 252 5.5.1 Overview 252 5.5.2 Secondary Ion Optics 253 5.5.3 Dual Beam Methods and ToF 254 5.5.4 Gating 254 5.6 Conclusions 256 References 257 Problems 267 6 Low-Energy Ion Scattering and Rutherford Backscattering 269 Edmund Taglauer 6.1 Introduction 269 6.2 Physical Basis 271 6.2.1 The Scattering Process 271 6.2.2 Collision Kinematics 272 6.2.3 Interaction Potentials and Cross-sections 275 6.2.4 Shadow Cone 278 6.2.5 Computer Simulation 281 6.3 Rutherford Backscattering 284 6.3.1 Energy Loss 284 6.3.2 Apparatus 287 6.3.3 Beam Effects 289 6.3.4 Quantitative Layer Analysis 290 6.3.5 Structure Analysis 293 6.3.6 Medium-Energy Ion Scattering (MEIS) 297 6.3.7 The Value of RBS and Comparison to Related Techniques 298 6.4 Low-Energy Ion Scattering 300 6.4.1 Neutralization 300 6.4.2 Apparatus 303 6.4.3 Surface Composition Analysis 307 6.4.4 Structure Analysis 316 6.4.5 Conclusions 323 Acknowledgement 324 References 324 Problems 330 Key Facts 330 7 Vibrational Spectroscopy from Surfaces 333 Martyn E. Pemble and Peter Gardner 7.1 Introduction 333 7.2 Infrared Spectroscopy from Surfaces 334 7.2.1 Transmission IR Spectroscopy 335 7.2.2 Photoacoustic Spectroscopy 340 7.2.3 Reflectance Methods 342 7.3 Electron Energy Loss Spectroscopy (EELS) 361 7.3.1 Inelastic or ‘Impact’ Scattering 362 7.3.2 Elastic or ‘Dipole’ Scattering 365 7.3.3 The EELS (HREELS) Experiment 367 7.4 The Group Theory of Surface Vibrations 368 7.4.1 General Approach 368 7.4.2 Group Theory Analysis of Ethyne Adsorbed at a Flat, Featureless Surface 369 7.4.3 Group Theory Analysis of Ethyne Adsorbed at a (100) Surface of an FCC Metal 373 7.4.4 The Expected Form of the RAIRS and Dipolar EELS (HREELS) Spectra 374 7.5 Laser Raman Spectroscopy from Surfaces 375 7.5.1 Theory of Raman Scattering 376 7.5.2 The Study of Collective Surface Vibrations (Phonons) using Raman Spectroscopy 377 7.5.3 Raman Spectroscopy from Metal Surfaces 379 7.5.4 Spatial Resolution in Surface Raman Spectroscopy 380 7.5.5 Fourier Transform Surface Raman Techniques 380 7.6 Inelastic Neutron Scattering (INS) 381 7.6.1 Introduction to INS 381 7.6.2 The INS Spectrum 382 7.6.3 INS Spectra ofHydrodesesulfurization Catalysts 382 7.7 Sum-Frequency Generation Methods 383 References 386 Problems 389 8 Surface Structure Determination by Interference Techniques 391 Christopher A. Lucas 8.1 Introduction 391 8.1.1 Basic Theory of Diffraction – Three Dimensions 392 8.1.2 Extension to Surfaces – Two Dimensions 398 8.2 Electron Diffraction Techniques 402 8.2.1 General Introduction 402 8.2.2 Low Energy Electron Diffraction 403 8.2.3 Reflection High Energy Electron Diffraction (RHEED) 418 8.3 X-ray Techniques 424 8.3.1 General Introduction 424 8.3.2 X-ray Adsorption Spectroscopy 427 8.3.3 Surface X-ray Diffraction (SXRD) 447 8.3.4 X-ray Standing Waves (XSWs) 456 8.4 Photoelectron Diffraction 464 8.4.1 Introduction 464 8.4.2 Theoretical Considerations 465 8.4.3 Experimental Details 469 8.4.4 Applications of XPD and PhD 470 References 474 9 Scanning Probe Microscopy 479 Graham J. Leggett 9.1 Introduction 479 9.2 Scanning Tunnelling Microscopy 480 9.2.1 Basic Principles of the STM 481 9.2.2 Instrumentation and Basic Operation Parameters 487 9.2.3 Atomic Resolution and Spectroscopy: Surface Crystal and Electronic Structure 489 9.3 Atomic Force Microscopy 511 9.3.1 Basic Principles of the AFM 511 9.3.2 Chemical Force Microscopy 524 9.3.3 Friction Force Microscopy 526 9.3.4 Biological Applications of the AFM 532 9.4 Scanning Near-Field Optical Microscopy 537 9.4.1 Optical Fibre Near-Field Microscopy 537 9.4.2 Apertureless SNOM 541 9.5 Other Scanning Probe Microscopy Techniques 542 9.6 Lithography Using Probe Microscopy Methods 544 9.6.1 STM Lithography 544 9.6.2 AFM Lithography 545 9.6.3 Near-Field Photolithography 549 9.6.4 The ‘Millipede’ 550 9.7 Conclusions 551 References 552 Problems 559 10 The Application of Multivariate Data Analysis Techniques in Surface Analysis 563 Joanna L.S. Lee and Ian S. Gilmore 10.1 Introduction 563 10.2 Basic Concepts 565 10.2.1 Matrix and Vector Representation of Data 565 10.2.2 Dimensionality and Rank 567 10.2.3 Relation to Multivariate Analysis 568 10.2.4 Choosing the Appropriate Multivariate Method 568 10.3 Factor Analysis for Identification 569 10.3.1 Terminology 570 10.3.2 Mathematical Background 570 10.3.3 Principal Component Analysis 571 10.3.4 Multivariate Curve Resolution 579 10.3.5 Analysis of Multivariate Images 582 10.4 Regression Methods for Quantification 591 10.4.1 Terminology 591 10.4.2 Mathematical Background 592 10.4.3 Principal Component Regression 594 10.4.4 Partial Least Squares Regression 595 10.4.5 Calibration, Validation and Prediction 596 10.4.6 Example – Correlating ToF–SIMS Spectra with PolymerWettability Using PLS 598 10.5 Methods for Classification 600 10.5.1 Discriminant Function Analysis 601 10.5.2 Hierarchal Cluster Analysis 602 10.5.3 Artificial Neural Networks 603 10.6 Summary and Conclusion 606 Acknowledgements 608 References 608 Problems 611 Appendix 1 Vacuum Technology for Applied Surface Science 613 Rod Wilson A1.1 Introduction: Gases and Vapours 613 A1.2 The Pressure Regions of Vacuum Technology and their Characteristics 619 A1.3 Production of a Vacuum 622 A1.3.1 Types of Pump 622 A1.3.2 Evacuation of a Chamber 634 A1.3.3 Choice of Pumping System 635 A1.3.4 Determination of the Size of Backing Pumps 636 A1.3.5 Flanges and their Seals 636 A1.4 Measurement of Low Pressures 637 A1.4.1 Gauges for Direct Pressure Measurement 638 A1.4.2 Gauges Using Indirect Means of Pressure Measurement 640 A1.4.3 Partial Pressure Measuring Instruments 644 Acknowledgement 647 References 647 Appendix 2 Units, Fundamental Physical Constants and Conversions 649 A2.1 Base Units of the SI 649 A2.2 Fundamental Physical Constants 650 A2.3 Other Units and Conversions to SI 651 References 652 Index 653

About the Author :
John C. Vickerman BSc in Chemistry (Edinburgh), Ph.D. in Surface Chemistry (Bristol), DSc (Bristol). Predoctoral fellowships at the Universities of Perugia and Rome, postdoctoral fellowships at the University of Bristol and the Technical University of Eindhoven. Sabbatical study periods at the University of Munich, the Free University of Berlin and Pennsylvania State University. Dr Ian Gilmore, Surface and Nano-Analysis, National Physical Laboratory, Teddington, UK Ian is a Principal Research Scientist in the Surface and Nano-Analysis Research team and joined NPL in 1991. His research has a focus on the analysis of complex molecules at surfaces. Recent research has led to the development of a novel new variant of static static SIMS called gentle-SIMS or G-SIMS, He received a degree in Physics from the University of Manchester in 1991 and a PhD from the University of Loughborough in 2000. Ian is a Fellow of the Institute of Physics a member of the EPSRC College and a member of the American Vacuum Society.


Best Sellers


Product Details
  • ISBN-13: 9781119965527
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Standards Information Network
  • Edition: Revised edition
  • No of Pages: 688
  • ISBN-10: 1119965527
  • Publisher Date: 15 Aug 2011
  • Binding: Digital (delivered electronically)
  • Language: English
  • Sub Title: The Principal Techniques


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Surface Analysis: The Principal Techniques
John Wiley & Sons Inc -
Surface Analysis: The Principal Techniques
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Surface Analysis: The Principal Techniques

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!