Mastering Knowledge Graphs and LLM Integration
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Databases > Database design and theory > Mastering Knowledge Graphs and LLM Integration: Designing Context-Aware, Explainable, and Scalable AI Systems
Mastering Knowledge Graphs and LLM Integration: Designing Context-Aware, Explainable, and Scalable AI Systems

Mastering Knowledge Graphs and LLM Integration: Designing Context-Aware, Explainable, and Scalable AI Systems


     0     
5
4
3
2
1



International Edition


X
About the Book

This book is a comprehensive guide to the future of intelligent systems - where Knowledge Graphs meet Large Language Models (LLMs) to create AI that understands, reasons, and explains. It explores the complete journey from foundational concepts to advanced architectures, showing how structured knowledge and neural intelligence work together to power context-aware, trustworthy, and scalable AI applications. Written with the precision of an AI researcher and the clarity of a software engineer, Mastering Knowledge Graphs and LLM Integration bridges academic theory and real-world practice. Each chapter is backed by practical code examples, real industry use cases, and proven deployment templates used in enterprise AI environments. This book delivers not just knowledge - but implementation confidence, rooted in authentic, production-tested systems. About the Technology: Knowledge Graphs provide the structured backbone of reasoning - representing entities, relationships, and context. Large Language Models bring the semantic understanding that allows systems to communicate naturally. When fused, they form a new class of hybrid AI systems capable of contextual inference, explainability, and long-term memory. The book covers modern graph frameworks (Neo4j, GraphDB, RDFLib), hybrid reasoning paradigms (SPARQL + LLMs, GraphRAG), and integration strategies that transform traditional AI workflows into explainable, cognitive systems. What's Inside: Inside these pages, you'll learn to: Design and build semantic knowledge graphs for hybrid AI reasoning. Integrate LLMs with graph databases using Python, LangChain, and Neo4j. Engineer context-aware, explainable AI pipelines for real-world applications. Deploy scalable KG-LLM systems using Docker, Kubernetes, and Helm. Evaluate factual accuracy, consistency, and explainability using advanced metrics. Every chapter includes authentic, working examples - from building your first ontology to orchestrating graph-grounded RAG pipelines for cognitive assistants. Who This Book Is For: This book is written for AI engineers, data scientists, software architects, and researchers who want to move beyond pure neural networks and build structured, intelligent systems. Whether you're designing enterprise search engines, intelligent assistants, or autonomous reasoning agents, this book will help you architect the foundations of trustworthy, graph-integrated AI. AI is shifting faster than any technology before it. Companies and researchers that adopt hybrid intelligence early - systems that can reason, explain, and adapt - will define the next decade of innovation. Staying with black-box models is no longer enough; the future belongs to explainable, structured, and self-aware AI systems. This book gives you the roadmap to build them today. This is more than a technical manual - it's a professional accelerator. Every concept, tool, and workflow in this book is geared toward building production-ready systems that deliver real business and research impact. By mastering the integration of knowledge and language, you'll position yourself at the forefront of AI innovation - where understanding meets intelligence. If you're ready to go beyond black-box AI and start building intelligent, explainable, and self-evolving systems, this is the book for you. Get your copy of Mastering Knowledge Graphs and LLM Integration today - and start shaping the architecture of tomorrow's cognitive AI.


Best Sellers


Product Details
  • ISBN-13: 9798274138864
  • Publisher: Independently Published
  • Publisher Imprint: Independently Published
  • Height: 244 mm
  • No of Pages: 346
  • Returnable: N
  • Sub Title: Designing Context-Aware, Explainable, and Scalable AI Systems
  • Width: 170 mm
  • ISBN-10: 8274138864
  • Publisher Date: 11 Nov 2025
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Spine Width: 18 mm
  • Weight: 603 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Mastering Knowledge Graphs and LLM Integration: Designing Context-Aware, Explainable, and Scalable AI Systems
Independently Published -
Mastering Knowledge Graphs and LLM Integration: Designing Context-Aware, Explainable, and Scalable AI Systems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Mastering Knowledge Graphs and LLM Integration: Designing Context-Aware, Explainable, and Scalable AI Systems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!