Graph Rag for Llms
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Human–computer interaction > Graph Rag for Llms: Building Smarter Retrieval-Augmented Generation Pipelines(Agentic Intelligence: Systems & Protocols)
Graph Rag for Llms: Building Smarter Retrieval-Augmented Generation Pipelines(Agentic Intelligence: Systems & Protocols)

Graph Rag for Llms: Building Smarter Retrieval-Augmented Generation Pipelines(Agentic Intelligence: Systems & Protocols)


     0     
5
4
3
2
1



International Edition


X
About the Book

Graph RAG for LLMs: Building Smarter Retrieval-Augmented Generation Pipelines How can you make large language models (LLMs) smarter, more reliable, and context-aware?Today's AI models are powerful, but their limitations in real-time retrieval, reasoning, and grounding knowledge make them prone to hallucinations and misinformation. The answer? Graph RAG-a cutting-edge approach that enhances Retrieval-Augmented Generation (RAG) pipelines with graph-based knowledge systems, creating more accurate, explainable, and efficient AI applications. What This Book CoversThis book is a practical, hands-on guide to building Graph RAG pipelines that enhance LLMs with structured, contextual, and continuously updating knowledge graphs. Whether you're an AI developer, researcher, or data scientist, you'll learn how to: Design and implement knowledge graphs for effective document retrieval and context expansion. Integrate LLMs with graph databases like Neo4j and ArangoDB for scalable, real-time information retrieval. Leverage graph traversal, embeddings, and Graph Neural Networks (GNNs) to refine responses and eliminate irrelevant information. Enhance LLM accuracy, reduce hallucinations, and improve explainability through structured multi-hop reasoning. Deploy Graph RAG at scale using cloud-based solutions and distributed architectures. What Sets This Book Apart?Comprehensive and Practical: Step-by-step implementations, real-world use cases, and fully documented Python code. Multimodal Approach: Learn how to retrieve not just text, but also image, audio, and video data using Graph RAG. Future-Ready: Covers the latest trends in AI, from real-time graph updates to hybrid transformer-GNN models. Industry Use Cases: Explore finance, healthcare, enterprise search, and chatbot applications where Graph RAG is revolutionizing AI. Ready to Build the Future of AI?If you're serious about scaling LLMs with structured knowledge and creating AI systems that reason, retrieve, and generate with unprecedented accuracy, this book is for you. Get your copy today and start building smarter Retrieval-Augmented Generation pipelines!


Best Sellers


Product Details
  • ISBN-13: 9798314000762
  • Publisher: Independently Published
  • Publisher Imprint: Independently Published
  • Height: 254 mm
  • No of Pages: 362
  • Returnable: N
  • Spine Width: 19 mm
  • Weight: 629 gr
  • ISBN-10: 8314000760
  • Publisher Date: 13 Mar 2025
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Series Title: Agentic Intelligence: Systems & Protocols
  • Sub Title: Building Smarter Retrieval-Augmented Generation Pipelines
  • Width: 178 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Graph Rag for Llms: Building Smarter Retrieval-Augmented Generation Pipelines(Agentic Intelligence: Systems & Protocols)
Independently Published -
Graph Rag for Llms: Building Smarter Retrieval-Augmented Generation Pipelines(Agentic Intelligence: Systems & Protocols)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Graph Rag for Llms: Building Smarter Retrieval-Augmented Generation Pipelines(Agentic Intelligence: Systems & Protocols)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!