Buy Bayesian Machine Learning in Quantitative Finance by Tshilidzi Marwala
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Business and Economics > Finance and accounting > Finance and the finance industry > Corporate finance > Bayesian Machine Learning in Quantitative Finance: Theory and Practical Applications
37%
Bayesian Machine Learning in Quantitative Finance: Theory and Practical Applications

Bayesian Machine Learning in Quantitative Finance: Theory and Practical Applications


     0     
5
4
3
2
1



Available


X
About the Book

This book offers a comprehensive discussion of the Bayesian inference framework and demonstrates why this probabilistic approach is ideal for tackling the various modelling problems within quantitative finance. It demonstrates how advanced Bayesian machine learning techniques can be applied within financial engineering, investment portfolio management, insurance, municipal finance management as well as banking. The book covers a broad range of modelling approaches, including Bayesian neural networks, Gaussian processes and Markov Chain Monte Carlo methods. It also discusses the utility of Bayesian inference in quantitative finance and discusses future research goals in the applications of Bayesian machine learning in quantitative finance. Chapters are rooted in the theory of quantitative finance and machine learning while also outlining a range of practical considerations for implementing Bayesian techniques into real-world quantitative finance problems. This book is ideal for graduate researchers and practitioners at the intersection of machine learning and quantitative finance, as well as those working in computational statistics and computer science more broadly.

Table of Contents:
1 Introduction To Bayesian Machine Learning In Quantitative Finance.- 2 Background To Bayesian Machine Learning In Quantitative Finance.- 3 On the Stochastic Alpha Beta Rho Model and Hamiltonian Monte Carlo Techniques.- 4 Learning Equity Volatility Surfaces using Sparse Gaussian Processes.- 5 Analyzing South African Equity Option Prices Using Normalizing Flows.- 6 Sparse and Distributed Gaussian Processes For Modeling Corporate Credit Ratings.- 7 Bayesian Detection Of Recovery On Charged-Off Loan Accounts.- 8 Bayesian Audit Outcome Model Selection Using Normalising Flows.- 9 Bayesian Detection Of Unauthorized Expenditure Using Langevin and Hamiltonian Monte Carlo.- 10 Bayesian Neural Network Inference Of Motor Insurance Claims.- 11 Shadow and Adaptive Hamiltonian Monte Carlo Methods For Calibrating The Nelson and Siegel Model.- 12 Static and Dynamic Nested Sampling For Yield Curve Model Selection.- 13 A Bayesian Investment Analyst On The Johannesburg Stock Exchange.- 14 Conclusions to Bayesian Machine Learning In Quantitative Finance.

About the Author :
Wilson Tsakane Mongwe is a machine learning research fellow at the University of Johannesburg, South Africa, and an Associate Director and the Head Quantitative Analyst at a Big Four audit firm’s Financial Services Advisory business unit. He was previously the Head of Market Risk and Capital Analytics at a tier 1 South African bank's Global Markets division. He holds a Masters in Mathematical Finance from the University of Cape Town and a PhD in Artificial Intelligence from the University of Johannesburg. He was awarded a Google PhD fellowship in machine learning in 2020, which supported his PhD research. He received the Mail and Guardian Top 200 Young South Africans award for 2020, and was recognized as one of 30 Young Mandela’s in 2022 by News24. He is an author of the machine learning book entitled “Hamiltonian Monte Carlo Methods in Machine Learning”. Rendani Mbuvha is currently Associate Professor of Actuarial Science in the Department of Mathematics at the University of Manchester, UK. Previously, he served as a Google DeepMind Academic Fellow with Queen Mary University of London (QMUL) and as an Associate Professor at the University of Witwatersrand, South Africa. He is a fellow of the Institute and Faculty of Actuaries and Co-Founder of AfriClimate AI, a grassroots community focused on AI for Climate action research in the global south. He has published extensively in probabilistic inference in machine learning, renewable energy modeling, and computational finance.  Tshilidzi Marwala is United Nations Under-Secretary-General and Rector of the UN University and was formerly the Vice-Chancellor of the University of Johannesburg (UJ), South Africa. He was the trustee of the Nelson Mandela Foundation and is a member of the American Academy of Arts and Sciences, Chinese Academy of Sciences, The World Academy of Sciences and the African Academy of Sciences. He holds a Bachelor of Science in Mechanical Engineering from Case Western Reserve University and a PhD in Artificial Intelligence from the University of Cambridge. He has published 27 books in artificial intelligence and related areas.


Best Sellers


Product Details
  • ISBN-13: 9783031884306
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Palgrave Macmillan
  • Height: 210 mm
  • No of Pages: 329
  • Sub Title: Theory and Practical Applications
  • ISBN-10: 3031884302
  • Publisher Date: 22 Jun 2025
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Width: 148 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Bayesian Machine Learning in Quantitative Finance: Theory and Practical Applications
Springer International Publishing AG -
Bayesian Machine Learning in Quantitative Finance: Theory and Practical Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Bayesian Machine Learning in Quantitative Finance: Theory and Practical Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!