Buy Hamiltonian Monte Carlo Methods in Machine Learning by Tshilidzi Marwala
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine learning > Hamiltonian Monte Carlo Methods in Machine Learning
Hamiltonian Monte Carlo Methods in Machine Learning

Hamiltonian Monte Carlo Methods in Machine Learning


     0     
5
4
3
2
1



International Edition


X
About the Book

Hamiltonian Monte Carlo Methods in Machine Learning introduces methods for optimal tuning of HMC parameters, along with an introduction of Shadow and Non-canonical HMC methods with improvements and speedup. Lastly, the authors address the critical issues of variance reduction for parameter estimates of numerous HMC based samplers. The book offers a comprehensive introduction to Hamiltonian Monte Carlo methods and provides a cutting-edge exposition of the current pathologies of HMC-based methods in both tuning, scaling and sampling complex real-world posteriors. These are mainly in the scaling of inference (e.g., Deep Neural Networks), tuning of performance-sensitive sampling parameters and high sample autocorrelation. Other sections provide numerous solutions to potential pitfalls, presenting advanced HMC methods with applications in renewable energy, finance and image classification for biomedical applications. Readers will get acquainted with both HMC sampling theory and algorithm implementation.

Table of Contents:
1. Introduction to Hamiltonian Monte Carlo 2. Sampling Benchmarks and Performance Metrics 3. Stochastic Volatility Metropolis-Hastings 4. Quantum-Inspired Magnetic Hamiltonian Monte Carlo 5. Generalised Magnetic and Shadow Hamiltonian Monte Carlo 6. Shadow Hamiltonian Monte Carlo Methods 7. Adaptive Shadow Hamiltonian Monte Carlo Methods 8. Adaptive Noncanonical Hamiltonian Monte Carlo 9. Antithetic Hamiltonian Monte Carlo Techniques 10. Application: Bayesian Neural Network Inference in Wind Speed Forecasting 11. Application: A Bayesian Analysis of Lockdown Alert Level Framework for Combating COVID-19 12. Application: Probabilistic Inference of Equity Option Prices Under Jump-Di 13. Application: Bayesian Inference of Local Government Audit Outcomes 14. Open Problems in Sampling Appendix A: Separable Shadow Hamiltonian B: Automatic Relevance Determination C: Audit Outcome Literature Survey

About the Author :
Dr. Tshilidzi Marwala is the Rector of the United Nations (UN) University and the UN Under-Secretary-General from 1 March 2023. He was previously the Vice-Chancellor and Principal of the University of Johannesburg, Deputy Vice-Chancellor for Research and Executive Dean of the Faculty of Engineering at the University of Johannesburg. He was Associate Professor, Full Professor, the Carl and Emily Fuchs Chair of Systems and Control Engineering at the University of the Witwatersrand. He holds a Bachelor of Science in Mechanical Engineering (magna cum laude) from Case Western Reserve University, a Master of Mechanical Engineering from the University of Pretoria, PhD in Artificial Intelligence from the University of Cambridge and a Post-Doc at Imperial College (London). He is a registered professional engineer, a Fellow of TWAS (The World Academy of Sciences), the Academy of Science of South Africa, the African Academy of Sciences and the South African Academy of Engineering. He is a Senior Member of the IEEE and a distinguished member of the ACM. His research interests are multi-disciplinary and they include the theory and application of artificial intelligence to engineering, computer science, finance, social science and medicine. He has supervised 28 Doctoral students published 15 books in artificial intelligence (one translated into Chinese), over 300 papers in journals, proceedings, book chapters and magazines and holds five patents. He is an associate editor of the International Journal of Systems Science (Taylor and Francis Publishers). He has been a visiting scholar at Harvard University, University of California at Berkeley, Wolfson College of the University of Cambridge, Nanjing Tech University and Silesian University of Technology in Poland. His opinions have appeared in the New Scientist, The Economist, Time Magazine, BBC, CNN and the Oxford Union. Dr. Marwala is the author of Rational Machines and Artificial Intelligence from Elsevier Academic Press. Dr. Rendani Mbuvha is a lecturer in Statistics and Actuarial Science at the University of Witwatersrand, Johannesburg, South Africa. He is a qualified Actuary and a holder of the Chartered Enterprise Risk Actuary designation. He holds a BSc with Honors in Actuarial Science and Statistics from the University of Cape Town, an MSc in Machine Learning from KTH, Royal Institute of Technology in Sweden, and a Ph.D. in Probabilistic Parameter Inference at the University of Johannesburg. He was a recipient of the Google Ph.D. fellowship for his research at the University of Johannesburg. He has previously served in various analytics and actuarial roles in large financial services and AI consulting organizations in both South Africa and Sweden. Wilson Tsakane Mongwe is a Researcher at the University of Johannesburg, South Africa, specializing in Bayesian machine learning and Markov Chain Monte Carlo methods. He received his BSc in Computing from the University of South Africa, his BBusSci in Actuarial Science from the University of Cape Town, and his MSc in Mathematical Finance from the University of Cape Town. He was the recipient of the Google PhD fellowship in machine learning, which is supporting his PhD research.


Best Sellers


Product Details
  • ISBN-13: 9780443190353
  • Publisher: Elsevier Science Publishing Co Inc
  • Publisher Imprint: Academic Press Inc
  • Height: 235 mm
  • No of Pages: 220
  • Width: 191 mm
  • ISBN-10: 0443190356
  • Publisher Date: 16 Feb 2023
  • Binding: Paperback
  • Language: English
  • Weight: 440 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Hamiltonian Monte Carlo Methods in Machine Learning
Elsevier Science Publishing Co Inc -
Hamiltonian Monte Carlo Methods in Machine Learning
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Hamiltonian Monte Carlo Methods in Machine Learning

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!