Federated Learning
Home > Computing and Information Technology > Computer science > Artificial intelligence > Federated Learning: (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Federated Learning: (Synthesis Lectures on Artificial Intelligence and Machine Learning)

Federated Learning: (Synthesis Lectures on Artificial Intelligence and Machine Learning)


     0     
5
4
3
2
1



International Edition


X
About the Book

How is it possible to allow multiple data owners to collaboratively train and use a shared prediction model while keeping all the local training data private? Traditional machine learning approaches need to combine all data at one location, typically a data center, which may very well violate the laws on user privacy and data confidentiality. Today, many parts of the world demand that technology companies treat user data carefully according to user-privacy laws. The European Union's General Data Protection Regulation (GDPR) is a prime example. In this book, we describe how federated machine learning addresses this problem with novel solutions combining distributed machine learning, cryptography and security, and incentive mechanism design based on economic principles and game theory. We explain different types of privacy-preserving machine learning solutions and their technological backgrounds, and highlight some representative practical use cases. We show how federated learning can become the foundation of next-generation machine learning that caters to technological and societal needs for responsible AI development and application.

Table of Contents:
Preface.- Acknowledgments.- Introduction.- Background.- Distributed Machine Learning.- Horizontal Federated Learning.- Vertical Federated Learning.- Federated Transfer Learning.- Incentive Mechanism Design for Federated Learning.- Federated Learning for Vision, Language, and Recommendation.- Federated Reinforcement Learning.- Selected Applications.- Summary and Outlook.- Bibliography.- Authors' Biographies.

About the Author :
Qiang Yang is the head of the AI department at WeBank (Chief AI Officer) and Chair Professor at the Computer Science and Engineering (CSE) Department of the Hong Kong University of Science and Technology (HKUST), where he was a former head of CSE Department and founding director of the Big Data Institute (2015-2018). His research interests include AI, machine learning, and data mining, especially in transfer learning, automated planning, federated learning, and case-based reasoning. He is a fellow of several international societies, including ACM, AAAI, IEEE, IAPR, and AAAS. He received his Ph.D. in Computer Science in 1989 and his M.Sc. in Astrophysics in 1985, both from the University of Maryland, College Park. He obtained his B.Sc. in Astrophysics from Peking University in 1982. He had been a faculty member at the University of Waterloo (1989-1995) and Simon Fraser University (1995-2001). He was the founding Editor-in-Chief of the ACM Transactions on Intelligent Systems and Technology (ACM TIST)and IEEE Transactions on Big Data (IEEE TBD). He served as the President of International Joint Conference on AI (IJCAI, 2017-2019) and an executive council member of Association for the Advancement of AI (AAAI, 2016-2020). Qiang Yang is a recipient of several awards, including the 2004/2005 ACM KDDCUP Championship, the ACM SIGKDD Distinguished Service Award (2017), and AAAI Innovative AI Applications Award (2016). He was the founding director of Huawei's Noah's Ark Lab (2012-2014) and a co-founder of 4Paradigm Corp, an AI platform company. He is an author of several books including Intelligent Planning (Springer), Crafting Your Research Future (Morgan & Claypool), and Constraint-based Design Recovery for Software Engineering (Springer).Yang Liu is a Senior Researcher in the AI Department of WeBank, China. Her research interests include machine learning, federated learning, transfer learning, multi-agent systems, statistical mechanics, and applications of these technologies in the financial industry. She received her Ph.D. from Princeton University in 2012 and her Bachelor's degree from Tsinghua University in 2007. She holds multiple patents. Her research has been published in leading scientific journals such as ACM TIST and Nature.Yong Cheng is currently a Senior Researcher in the AI Department of WeBank, Shenzhen, China. Previously, he had worked in Huawei Technologies Co., Ltd. (Shenzhen) as a Senior Engineer, and in Bell Labs Germany as a Senior Researcher. Yong had also worked as a Researcher in the Huawei-HKUST Innovation Laboratory, Hong Kong. His research interests and expertise mainly include Deep Learning, Federated Learning, Computer Vision and OCR, Mathematical Optimization and Algorithms, Distributed Computing, as well as Mixed-Integer Programming. He has published more than 20 journal and conference papers and filed more than 40 patents. Yong received the B.Eng. (1st class honors), MPhil, and Ph.D. (1st class honors) degrees from Zhejiang University (ZJU), Hangzhou, PR China, the Hong Kong University of Science and Technology (HKUST), Hong Kong, and Technische Universitat Darmstadt (TU Darmstadt), Darmstadt, Germany, in 2006, 2010, and 2013, respectively. He received the best Ph.D. thesis award of TU Darmstadt in 2014, and the best B.Eng. thesis award of ZJU in 2006. Yong gave a tutorial on ""Mixed-Integer Conic Programming"" at ICASSP'15, and he was the PC Member of FML'19 (in conjunction with IJCAI'19).Yan Kang is a Senior Researcher in the AI department of Webank in Shenzhen, China. His work is focusing on the research and implementation of privacy-preserving machine learning and federated transfer learning techniques. He received M.S. and Ph.D. degrees in Computer Science from the University of Maryland, Baltimore County, USA. His Ph.D. work was awarded a doctoral fellowship and centered around machine learning and semantic web for heterogeneous data integration. During his graduate work,he participated in multiple projects collaborating with the National Institute of Standards and Technology (NIST) and the National Science Foundation (NSF) for designing and developing ontology integration systems. He also has adequate experiences in commercial software projects. Before joining WeBank, he had been working for Stardog Union Inc. and Cerner Corporation for more than four years on system design and implementation.Tianjian Chen is the Deputy General Manager of the AI Department of WeBank, China. He is now responsible for building the Banking Intelligence Ecosystem based on Federated Learning Technology. Before joining WeBank, he was the Chief Architect of Baidu Finance, Principal Architect of Baidu. Tianjian has over 12 years of experience in large-scale distributed system design and enabling technology innovations in various application fields, such as web search engine, peer-to-peer storage, genomics, recommender system, digital banking, and machine learning.Han Yu is a Nanyang Assistant Professor (NAP) in the School of Computer Science and Engineering (SCSE), Nanyang Technological University (NTU), Singapore. Between 2015 and 2018, he held the prestigious Lee Kuan Yew Post-Doctoral Fellowship (LKY PDF). Before joining NTU, he worked as an Embedded Software Engineer at Hewlett-Packard (HP) PteLtd, Singapore. He obtained his Ph.D. in Computer Science from NTU in 2014. His research focuses on online convex optimization, ethical AI, federated learning, and their applications in complex collaborative systems such as crowdsourcing. He has published over 120 research papers leading international conferences and journals and won multiple research awards.


Best Sellers


Product Details
  • ISBN-13: 9783031004575
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 189
  • Returnable: Y
  • Width: 191 mm
  • ISBN-10: 3031004574
  • Publisher Date: 19 Dec 2019
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: Synthesis Lectures on Artificial Intelligence and Machine Learning


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Federated Learning: (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Springer International Publishing AG -
Federated Learning: (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Federated Learning: (Synthesis Lectures on Artificial Intelligence and Machine Learning)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!