Buy Federated Learning Book by Mariya Ouaissa - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine learning > Federated Learning: Principles, Paradigms, and Applications
Federated Learning: Principles, Paradigms, and Applications

Federated Learning: Principles, Paradigms, and Applications


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This new book provides an in-depth understanding of federated learning, a new and increasingly popular learning paradigm that decouples data collection and model training via multi-party computation and model aggregation. The volume explores how federated learning integrates AI technologies, such as blockchain, machine learning, IoT, edge computing, and fog computing systems, allowing multiple collaborators to build a robust machine-learning model using a large dataset. It highlights the capabilities and benefits of federated learning, addressing critical issues such as data privacy, data security, data access rights, and access to heterogeneous data. The volume first introduces the general concepts of machine learning and then summarizes the federated learning system setup and its associated terminologies. It also presents a basic classification of FL, the application of FL for various distributed computing scenarios, an integrated view of applications of software-defined networks, etc. The book also explores the role of federated learning in the Internet of Medical Things systems as well. The book provides a pragmatic analysis of strategies for developing a communication-efficient federated learning system. It also details the applicability of blockchain with federated learning on IoT-based systems. It provides an in-depth study of FL-based intrusion detection systems, discussing their taxonomy and functioning and showcasing their superiority over existing systems. The book is unique in that it evaluates the privacy and security aspects in federated learning. The volume presents a comprehensive analysis of some of the common challenges, proven threats, and attack strategies affecting FL systems. Special coverage on protected shot-based federated learning for facial expression recognition is also included. This comprehensive book, Federated Learning: Principles, Paradigms, and Applications, will enable research scholars, information technology professionals, and distributed computing engineers to understand various aspects of federated learning concepts and computational techniques for real-life implementation.

Table of Contents:
1. The Evolution of Machine Learning: From Centralized to Distributed 2. Types of Federated Learning and Aggregation Techniques 3. Federated Learning for IoT/Edge/Fog Computing Systems 4. Adopting Federated Learning for Software-Defined Networks 5. Federated Learning in the Internet of Medical Things 6. Federated Learning Approaches for Intrusion Detection Systems: An Overview 7. Exploring Communication Efficient Strategies in Federated Learning Systems 8. Federated Learning and Privacy, Challenges, Threat and Attack Models, and Analysis 9. Analyzing Federated Learning from a Security Perspective 10. Blockchain Integrated Federated Learning in Edge/Fog/Cloud Systems for IoT-Based Healthcare Applications: A Survey 11. Incentive Mechanism for Federated Learning 12. Protected Shot-Based Federated Learning for Facial Expression Recognition

About the Author :
Jayakrushna Sahoo, PhD, is associated with the Indian Institute of Information Technology, Kottayam, where he serves as the Head of Computer Science and Engineering department. Before this, he worked with BML Munjal University, Gurgaon, India, as an Assistant Professor in the Department of Computer Science and Engineering. Dr. Sahoo has also worked as an ad hoc faculty at the National Institute of Technology, Jamshedpur, India. His publications have appeared in many reputed journals over the years. His research interests include data mining, machine learning, and federated learning. With his vast experience in research, he has been guiding several PhD scholars and has been associated with some of the country’s premier institutions. He has also worked in the capacity of resource person and technical panel member and has headed several international conferences in India. Mariya Ouaissa, PhD, is a Professor in cybersecurity and networks as well as a research associate and practitioner with industry experience as a networks and telecoms engineer. She is a Co-Founder and IT Consultant at the IT Support and Consulting Center. She was formerly affiliated with the School of Technology of Meknes, Morocco. She is an expert reviewer with the Academic Exchange Information Centre (AEIC) and a brand ambassador with Bentham Science. She serves on technical programs and organizing committees of conferences, symposiums, and workshops in her field and is also a reviewer for numerous international journals. Dr. Ouaissa has published book chapters and research papers in international journals, and conferences and has edited several books and has guest editied several special journal issues. Akarsh K. Nair is a Doctoral Researcher at the Indian Institute of Information Technology, Kottayam, India, with a specialization in distributed learning, machine learning, federated learning, and edge intelligence. Mr. Nair has worked as an Assistant Professor in the Department of Computer Science at TEC College, Palakkad, India. He is also associated with iHub HCI Foundation of IIT, Himachal Pradesh, India, as a doctoral fellow. He has published several research articles in reputed scientific journals and international platforms. He has also acted as a reviewer for many prestigious scientific journals.


Best Sellers


Product Details
  • ISBN-13: 9781040088593
  • Publisher: Taylor & Francis Ltd
  • Publisher Imprint: Apple Academic Press Inc.
  • Language: English
  • ISBN-10: 1040088597
  • Publisher Date: 20 Sep 2024
  • Binding: Digital (delivered electronically)
  • Sub Title: Principles, Paradigms, and Applications


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Federated Learning: Principles, Paradigms, and Applications
Taylor & Francis Ltd -
Federated Learning: Principles, Paradigms, and Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Federated Learning: Principles, Paradigms, and Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!