Advanced Mapping of Environmental Data
Home > Sciences & Environment > The environment > Advanced Mapping of Environmental Data
Advanced Mapping of Environmental Data

Advanced Mapping of Environmental Data

|
     0     
5
4
3
2
1




International Edition


About the Book

This book combines geostatistics and global mapping systems to present an up-to-the-minute study of environmental data. Featuring numerous case studies, the reference covers model dependent (geostatistics) and data driven (machine learning algorithms) analysis techniques such as risk mapping, conditional stochastic simulations, descriptions of spatial uncertainty and variability, artificial neural networks (ANN) for spatial data, Bayesian maximum entropy (BME), and more.

Table of Contents:
Preface xi Chapter 1. Advanced Mapping of Environmental Data: Introduction 1 M. KANEVSKI 1.1. Introduction 1 1.2. Environmental data analysis: problems and methodology 3 1.2.1. Spatial data analysis: typical problems 3 1.2.2. Spatial data analysis: methodology 5 1.2.3. Model assessment and model selection 8 1.3. Resources 12 1.3.1. Books, tutorials 12 1.3.2. Software 12 1.4. Conclusion 14 1.5. References 15 Chapter 2. Environmental Monitoring Network Characterization and Clustering 19 D. TUIA and M. KANEVSKI 2.1. Introduction 19 2.2. Spatial clustering and its consequences 20 2.2.1. Global parameters 21 2.2.2. Spatial predictions 22 2.3. Monitoring network quantification 23 2.3.1. Topological quantification 23 2.3.2. Global measures of clustering 23 2.3.2.1. Topological indices 23 2.3.2.2. Statistical indices 24 2.3.3. Dimensional resolution: fractal measures of clustering 26 2.3.3.1. Sandbox method 27 2.3.3.2. Box-counting method 30 2.3.3.3. Lacunarity 33 2.4. Validity domains 34 2.5. Indoor radon in Switzerland: an example of a real monitoring network 36 2.5.1. Validity domains 37 2.5.2. Topological index 37 2.5.3. Statistical indices 38 2.5.3.1. Morisita index 38 2.5.3.2. K-function 39 2.5.4. Fractal dimension 40 2.5.4.1. Sandbox and box-counting fractal dimension 40 2.5.4.2. Lacunarity 42 2.6. Conclusion 43 2.7. References 44 Chapter 3. Geostatistics: Spatial Predictions and Simulations 47 E. SAVELIEVA, V. DEMYANOV and M. MAIGNAN 3.1. Assumptions of geostatistics 47 3.2. Family of kriging models 49 3.2.1. Simple kriging 50 3.2.2. Ordinary kriging 50 3.2.3. Basic features of kriging estimation 51 3.2.4. Universal kriging (kriging with trend) 56 3.2.5. Lognormal kriging 56 3.3. Family of co-kriging models 58 3.3.1. Kriging with linear regression 58 3.3.2. Kriging with external drift 58 3.3.3. Co-kriging 59 3.3.4. Collocated co-kriging 60 3.3.5. Co-kriging application example 61 3.4. Probability mapping with indicator kriging 64 3.4.1. Indicator coding 64 3.4.2. Indicator kriging 66 3.4.3. Indicator kriging applications 69 3.4.3.1. Indicator kriging for 241Am analysis 69 3.4.3.2. Indicator kriging for aquifer layer zonation 71 3.4.3.3. Indicator kriging for localization of crab crowds 74 3.5. Description of spatial uncertainty with conditional stochastic simulations 76 3.5.1. Simulation vs. estimation 76 3.5.2. Stochastic simulation algorithms 77 3.5.3. Sequential Gaussian simulation 81 3.5.4. Sequential indicator simulations 84 3.5.5. Co-simulations of correlated variables 88 3.6. References 92 Chapter 4. Spatial Data Analysis and Mapping Using Machine Learning Algorithms 95 F. RATLE, A. POZDNOUKHOV, V. DEMYANOV, V. TIMONIN and E. SAVELIEVA 4.1. Introduction 95 4.2. Machine learning: an overview 96 4.2.1. The three learning problems 96 4.2.2. Approaches to learning from data 100 4.2.3. Feature selection 101 4.2.4. Model selection 103 4.2.5. Dealing with uncertainties 107 4.3. Nearest neighbor methods 108 4.4. Artificial neural network algorithms 109 4.4.1. Multi-layer perceptron neural network 109 4.4.2. General Regression Neural Networks 119 4.4.3. Probabilistic Neural Networks 122 4.4.4. Self-organizing (Kohonen) maps 124 4.5. Statistical learning theory for spatial data: concepts and examples 131 4.5.1. VC dimension and structural risk minimization 131 4.5.2. Kernels 132 4.5.3. Support vector machines 133 4.5.4. Support vector regression 137 4.5.5. Unsupervised techniques 141 4.5.5.1. Clustering 142 4.5.5.2. Nonlinear dimensionality reduction 144 4.6. Conclusion 146 4.7. References 146 Chapter 5. Advanced Mapping of Environmental Spatial Data: Case Studies 149 L. FORESTI, A. POZDNOUKHOV, M. KANEVSKI, V. TIMONIN, E. SAVELIEVA, C. KAISER, R. TAPIA and R. PURVES 5.1. Introduction 149 5.2. Air temperature modeling with machine learning algorithms and geostatistics 150 5.2.1. Mean monthly temperature 151 5.2.1.1. Data description 151 5.2.1.2. Variography 152 5.2.1.3. Step-by-step modeling using a neural network 153 5.2.1.4. Overfitting and undertraining 154 5.2.1.5. Mean monthly air temperature prediction mapping 156 5.2.2. Instant temperatures with regionalized linear dependencies 159 5.2.2.1. The Föhn phenomenon 159 5.2.2.2. Modeling of instant air temperature influenced by Föhn 160 5.2.3. Instant temperatures with nonlinear dependencies 163 5.2.3.1. Temperature inversion phenomenon 163 5.2.3.2. Terrain feature extraction using Support Vector Machines 164 5.2.3.3. Temperature inversion modeling with MLP 165 5.3. Modeling of precipitation with machine learning and geostatistics 168 5.3.1. Mean monthly precipitation 169 5.3.1.1. Data description 169 5.3.1.2. Precipitation modeling with MLP 171 5.3.2. Modeling daily precipitation with MLP 173 5.3.2.1. Data description 173 5.3.2.2. Practical issues of MLP modeling 174 5.3.2.3. The use of elevation and analysis of the results 177 5.3.3. Hybrid models: NNRK and NNRS 179 5.3.3.1. Neural network residual kriging 179 5.3.3.2. Neural network residual simulations 182 5.3.4. Conclusions 184 5.4. Automatic mapping and classification of spatial data using machine learning 185 5.4.1. k-nearest neighbor algorithm 185 5.4.1.1. Number of neighbors with cross-validation 187 5.4.2. Automatic mapping of spatial data 187 5.4.2.1. KNN modeling 188 5.4.2.2. GRNN modeling 190 5.4.3. Automatic classification of spatial data 192 5.4.3.1. KNN classification 193 5.4.3.2. PNN classification 194 5.4.3.3. Indicator kriging classification 197 5.4.4. Automatic mapping – conclusions 199 5.5. Self-organizing maps for spatial data – case studies 200 5.5.1. SOM analysis of sediment contamination 200 5.5.2. Mapping of socio-economic data with SOM 204 5.6. Indicator kriging and sequential Gaussian simulations for probability mapping. Indoor radon case study 209 5.6.1. Indoor radon measurements 209 5.6.2. Probability mapping 211 5.6.3. Exploratory data analysis 212 5.6.4. Radon data variography 216 5.6.4.1. Variogram for indicators 216 5.6.4.2. Variogram for Nscores 217 5.6.5. Neighborhood parameters 218 5.6.6. Prediction and probability maps 219 5.6.6.1. Probability maps with IK 219 5.6.6.2. Probability maps with SGS 220 5.6.7. Analysis and validation of results 221 5.6.7.1. Influence of the simulation net and the number of neighbors 221 5.6.7.2. Decision maps and validation of results 222 5.6.8. Conclusions 225 5.7. Natural hazards forecasting with support vector machines – case study: snow avalanches 225 5.7.1. Decision support systems for natural hazards 227 5.7.2. Reminder on support vector machines 228 5.7.2.1. Probabilistic interpretation of SVM 229 5.7.3. Implementing an SVM for avalanche forecasting 230 5.7.4. Temporal forecasts 230 5.7.4.1. Feature selection 231 5.7.4.2. Training the SVM classifier 232 5.7.4.3. Adapting SVM forecasts for decision support 233 5.7.5. Extending the SVM to spatial avalanche predictions 237 5.7.5.1. Data preparation 237 5.7.5.2. Spatial avalanche forecasting 239 5.7.6. Conclusions 241 5.8. Conclusion 241 5.9. References 242 Chapter 6. Bayesian Maximum Entropy – BME 247 G. CHRISTAKOS 6.1. Conceptual framework 247 6.2. Technical review of BME 251 6.2.1. The spatiotemporal continuum 251 6.2.2. Separable metric structures 253 6.2.3. Composite metric structures 255 6.2.4. Fractal metric structures 256 6.3. Spatiotemporal random field theory 257 6.3.1. Pragmatic S/TRF tools 258 6.3.2. Space-time lag dependence: ordinary S/TRF 260 6.3.3. Fractal S/TRF 262 6.3.4. Space-time heterogenous dependence: generalized S/TRF 264 6.4. About BME 267 6.4.1. The fundamental equations 267 6.4.2. A methodological outline 273 6.4.3. Implementation of BME: the SEKS-GUI 275 6.5. A brief review of applications 281 6.5.1. Earth and atmospheric sciences 282 6.5.2. Health, human exposure and epidemiology 291 6.6. References 299 List of Authors 307 Index 309


Best Sellers


Product Details
  • ISBN-13: 9781848210608
  • Publisher: ISTE Ltd and John Wiley & Sons Inc
  • Publisher Imprint: ISTE Ltd and John Wiley & Sons Inc
  • Height: 236 mm
  • No of Pages: 352
  • Returnable: N
  • Weight: 612 gr
  • ISBN-10: 1848210604
  • Publisher Date: 01 Aug 2008
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 20 mm
  • Width: 160 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Advanced Mapping of Environmental Data
ISTE Ltd and John Wiley & Sons Inc -
Advanced Mapping of Environmental Data
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Advanced Mapping of Environmental Data

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!