Machine Learning for Spatial Environmental Data
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Sciences & Environment > Earth sciences > Geology, geomorphology and the lithosphere > Geochemistry > Machine Learning for Spatial Environmental Data: Theory, Applications, and Software
Machine Learning for Spatial Environmental Data: Theory, Applications, and Software

Machine Learning for Spatial Environmental Data: Theory, Applications, and Software


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This book discusses machine learning algorithms, such as artificial neural networks of different architectures, statistical learning theory, and Support Vector Machines used for the classification and mapping of spatially distributed data.  It presents basic geostatistical algorithms as well. The authors describe new trends in machine lea

Table of Contents:
Learning From Geospatial Data: Problems and Important Concepts of Machine Learning - Machine Learning Algorithms for Geospatial Data - Contents of the Book. Software Description - Short Review of the Literature - Exploratory Spatial Data Analysis: Presentation of Data and Case Studies: Exploratory Spatial Data Analysis - Data Pre-Processing - Spatial Correlations: Variography - Presentation of Data - k-Nearest Neighbours Algorithm: a Benchmark Model for Regression and Classification - Geostatistics: Spatial Predictions - Geostatistical Conditional Simulations - Spatial Classification - Software - Machine Learning Algorithms: Artificial Neural Networks: Introduction - Radial Basis Function Neural Networks - General Regression Neural Networks - Probabilistic Neural Networks - Self-Organising Maps - Gaussian Mixture Models And Mixture Density Network � Support Vector Machines And Kernel Methods: Introduction to Statistical Learning Theory - Support Vector Classification - Spatial Data Classification with SVM - Support Vector Regression - Spatial Data Mapping with SVR - Advanced Topics in Kernel Methods.

About the Author :
Mikhail Kanevski, Vadim Timonin, Alexi Pozdnukhov


Best Sellers


Product Details
  • ISBN-13: 9781439808085
  • Publisher: Epfl Press
  • Publisher Imprint: Epfl Press
  • Language: English
  • ISBN-10: 1439808082
  • Publisher Date: 09 Jun 2009
  • Binding: Digital (delivered electronically)
  • Sub Title: Theory, Applications, and Software


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning for Spatial Environmental Data: Theory, Applications, and Software
Epfl Press -
Machine Learning for Spatial Environmental Data: Theory, Applications, and Software
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning for Spatial Environmental Data: Theory, Applications, and Software

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!