Convex Optimization for Machine Learning
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Optimization > Convex Optimization for Machine Learning: (NowOpen)
Convex Optimization for Machine Learning: (NowOpen)

Convex Optimization for Machine Learning: (NowOpen)


     0     
5
4
3
2
1



International Edition


X
About the Book

This book covers an introduction to convex optimization, one of the powerful and tractable optimization problems that can be efficiently solved on a computer. The goal of the book is tohelp develop a sense of what convex optimization is, and how it can be used in a widening array of practical contexts with a particular emphasis on machine learning.The first part of the book covers core concepts of convex sets, convex functions, and related basic definitions that serve understanding convex optimization and its corresponding models. The second part deals with one very useful theory, called duality, which enables us to: (1) gain algorithmic insights; and (2) obtain an approximate solution to non-convex optimization problems which are often difficult to solve. The last part focuses on modern applications in machine learning and deep learning.A defining feature of this book is that it succinctly relates the “story” of how convex optimization plays a role, via historical examples and trending machine learning applications. Another key feature is that it includes programming implementation of a variety of machine learning algorithms inspired by optimization fundamentals, together with a brief tutorial of the used programming tools. The implementation is based on Python, CVXPY, and TensorFlow. This book does not follow a traditional textbook-style organization, but is streamlined via a series of lecture notes that are intimately related, centered around coherent themes and concepts. It serves as a textbook mainly for a senior-level undergraduate course, yet is also suitable for a first-year graduate course. Readers benefit from having a good background in linear algebra, some exposure to probability, and basic familiarity with Python.

Table of Contents:
Preface 1 Convex Optimization Basics 1.1 Overview of the book 1.2 Definition of convex optimization 1.3 Tractability of convex optimization and gradient descent 1.4 Linear Program 1.5 Least Squares 1.6 Test error, regularization and CVXPY implementation 1.7 Computed tomography 1.8 Quadratic program 1.9 Second-order cone program 1.10 Semi-definite program 1.11 SDP relaxation 1.12 Problem Sets 2 Duality 2.1 Strong duality 2.2 Interior point method 2.3 Proof of strong duality theorem 2.4 Weak duality 2.5 Lagrange relaxation for Boolean problems 2.6 Lagrange relaxation for the MAXCUT problem 2.7 Problem Sets 3 Machine Learning Applications 3.1 Supervised learning and optimization 3.2 Logistic regression 3.3 Deep learning 3.4 Deep learning II 3.5 DL: TensorFlow implementation 3.6 Unsupervised Learning: Generative modeling 3.7 Generative Adversarial Networks (GANs) 3.8 GANs: TensorFlow implementation 3.9 Wasserstein GAN 3.10 Wasserstein GAN II 3.11 Wasserstein GAN: TensorFlow implementation 3.12 Fair machine learning 3.13 A fair classifier and its connection to GANs 3.14 A fair classifier: TensorFlow implementation Appendices

About the Author :
Changho Suh is an Associate Professor of Electrical Engineering at KAIST and an Associate Head of KAIST AI Institute. He received the B.S. and M.S. degrees in Electrical Engineering from KAIST in 2000 and 2002 respectively, and the Ph.D. degree in Electrical Engineering and Computer Sciences from UC Berkeley in 2011. From 2011 to 2012, he was a postdoctoral associate at the Research Laboratory of Electronics in MIT. From 2002 to 2006, he was with Samsung Electronics.

Review :
The topic is surely still of great interest, since courses on Convex Optimization, in conjunction or not with Machine Learning applications, are ubiquitous in Engineering curricula around the world. What appears as somewhat novel here is the juxtaposition of Part I and II on convex optimization and duality with Part III on machine learning applications. The emphasis on Python, TensorFlow etc. is also practically very important and surely appreciated by the students, especially if presented via challenging practical problems. More than completeness, I believe that what is important is that the book gives a meaningful “cut” through these topics, as this books appears to do. It seems important that the author tries to motivate and link together as much as possible part III with the previous parts, explaining why part I and II are important for part III, but also highlighting what the limits of convex models are and at which point they need be superseded by more general models. Giuseppe Carlo Calafiore, Professor at the Politecnico di Torino, Italy, and visiting Professor at UC Berkeley I have looked at the manuscript and my impression is positive, the aims and scope are actual and comprehensive. The intended audience is senior undergraduates and early graduate, which differs the book significantly from several competing books , and this should be an advantage. I would say that a good senior undergraduate level textbook on convex optimization would, in my opinion, be very timely. Arkadi Nemirovski, Georgia Tech, USA


Best Sellers


Product Details
  • ISBN-13: 9781638280521
  • Publisher: now publishers Inc
  • Publisher Imprint: now publishers Inc
  • Height: 234 mm
  • No of Pages: 350
  • Returnable: N
  • Series Title: NowOpen
  • Width: 156 mm
  • ISBN-10: 1638280525
  • Publisher Date: 30 Sep 2022
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Weight: 717 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Convex Optimization for Machine Learning: (NowOpen)
now publishers Inc -
Convex Optimization for Machine Learning: (NowOpen)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Convex Optimization for Machine Learning: (NowOpen)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!