Algorithms for Convex Optimization
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer programming / software engineering > Algorithms and data structures > Algorithms for Convex Optimization
Algorithms for Convex Optimization

Algorithms for Convex Optimization


     0     
5
4
3
2
1



Available


X
About the Book

In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.

Table of Contents:
1. Bridging continuous and discrete optimization; 2. Preliminaries; 3. Convexity; 4. Convex optimization and efficiency; 5. Duality and optimality; 6. Gradient descent; 7. Mirror descent and multiplicative weights update; 8. Accelerated gradient descent; 9. Newton's method; 10. An interior point method for linear programming; 11. Variants of the interior point method and self-concordance; 12. Ellipsoid method for linear programming; 13. Ellipsoid method for convex optimization.

About the Author :
Nisheeth K. Vishnoi is a Professor of Computer Science at Yale University. His research areas include theoretical computer science, optimization, and machine learning. He is a recipient of the Best Paper Award at IEEE FOCS in 2005, the IBM Research Pat Goldberg Memorial Award in 2006, the Indian National Science Academy Young Scientist Award in 2011, and the Best Paper award at ACM FAccT in 2019. He was elected an ACM Fellow in 2019. He obtained a bachelor degree in Computer Science and Engineering from IIT Bombay and a Ph.D. in Algorithms, Combinatorics and Optimization from Georgia Institute of Technology.

Review :
'The field of mathematical programming has two major themes: linear programming and convex programming. The far-reaching impact of the first theory in computer science, game theory and engineering is well known. We are now witnessing the growth of the second theory as it finds its way into diverse fields such as machine learning, mathematical economics and quantum computing. This much-awaited book with its unique approach, steeped in the modern theory of algorithms, will go a long way in making this happen.' Vijay V. Vazirani, Distinguished Professor at University of California, Irvine 'I had thought that there is no need for new books about convex optimization but this book proves me wrong. It treats both classic and cutting-edge topics with an unparalleled mix of clarity and rigor, building intuitions about key ideas and algorithms driving the field. A must read for anyone interested in optimization!' Aleksander Madry, Massachusetts Institute of Technology 'Vishnoi's book provides an exceptionally good introduction to convex optimization for students and researchers in computer science, operations research, and discrete optimization. The book gives a comprehensive introduction to classical results as well as to some of the most recent developments. Concepts and ideas are introduced from first principles, conveying helpful intuitions. There is significant emphasis on bridging continuous and discrete optimization, in particular, on recent breakthroughs on flow problems using convex optimization methods; the book starts with an enlightening overview of the interplay between these areas.' László Végh, LSE 'Recommended.' M. Bona, Choice Connect


Best Sellers


Product Details
  • ISBN-13: 9781108741774
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press
  • Height: 228 mm
  • No of Pages: 200
  • Returnable: N
  • Spine Width: 20 mm
  • Width: 150 mm
  • ISBN-10: 1108741770
  • Publisher Date: 07 Oct 2021
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Weight: 548 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Algorithms for Convex Optimization
Cambridge University Press -
Algorithms for Convex Optimization
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Algorithms for Convex Optimization

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!