Modern Data Science with R
Home > Business and Economics > Economics > Econometrics and economic statistics > Modern Data Science with R: (Chapman & Hall/CRC Texts in Statistical Science)
Modern Data Science with R: (Chapman & Hall/CRC Texts in Statistical Science)

Modern Data Science with R: (Chapman & Hall/CRC Texts in Statistical Science)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world problems with data. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling statistical questions. Contemporary data science requires a tight integration of knowledge from statistics, computer science, mathematics, and a domain of application. This book will help readers with some background in statistics and modest prior experience with coding develop and practice the appropriate skills to tackle complex data science projects. The book features a number of exercises and has a flexible organization conducive to teaching a variety of semester courses.

Table of Contents:
Introduction to Data Science. Data Visualization I. Tools for Data Science. Basic Data Wrangling in R. Querying Databases with SQL. Advanced Data Wrangling in R with dplyr. Statistical Learning. Foundations of Statistical Inference. Statistical Learning. Predictive Analytics and Data Mining. Towards Big Data. Precursors to Big Data. Introduction to MapReduce and Hadoop. Data visualization II. Special Topics. Network Science. Spatial Mapping. Text Mining with Regular Expressions. Appendices. How to write a function. Reproducible analysis with R Markdown. Enough Linear Algebra to Keep Folks out of Trouble. Enough probability to Keep Folks out of Trouble. Introduction to R and RStudio.

About the Author :
Benjamin S. Baumer is an assistant professor in the Statistical & Data Sciences program at Smith College. He has been a practicing data scientist since 2004, when he became the first full-time statistical analyst for the New York Mets. Ben is a co-author of The Sabermetric Revolution and won the 2016 Contemporary Baseball Analysis Award from the Society for American Baseball Research. Daniel T. Kaplan is the DeWitt Wallace professor of mathematics and computer science at Macalester College. He is the author of several textbooks on statistical modeling and statistical computing, and received the 2006 Macalester Excellence in Teaching award. Nicholas J. Horton is a professor of statistics at Amherst College. He is a Fellow of the American Statistical Association (ASA), member of the NRC Committee on Applied and Theoretical Statistics, recipient of a number of national teaching awards, author of a series of books on statistical computing, and actively involved in curricular reform to help students "think with data."

Review :
"Modern Data Science with R is one of the first textbooks to provide a comprehensive introduction to data science for students at the undergraduate level (it is also suitable for graduate students and professionals in other fields). The authors follow the approach taken by Garrett Grolemund and Hadley Wickham in their book, R for Data Science, and David Robinson in Teach the Tidyverse to Beginners, which emphasizes the teaching of data visualization and the tidyverse (using dplyr and chained pipes) before covering base R, along with using real-world data and modern data science methods. The textbook includes end of chapter exercises (an instructor’s solution manual is available), and a series of lab activities is also under development. The result is an excellent textbook that provides a solid foundation in data science for students and professionals alike... Modern Data Science with R is a breakthrough textbook." ~ ACM SIGACT News "Only about 60 of the book’s 551 pages address the questions of uncertainty and inference that constitute the core of the statistics tradition. The remaining pages attend the other components of working with data—the import, wrangling, tidying, visualization, and storage—that are often the more prominent barriers to understanding modern datasets...Modern Data Science with R is a landmark: the first full textbook in data science. (It can serve) as the backbone of a semester-long course targeted at students with little background in statistics or computing. It is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics…By using the tidyverse, the textbook authors are able to seamlessly interweave a conceptual framework for data science with the corresponding implementation in R code….Even though this book is heavily dependent on R, readers come away with a more general natural language with which to talk and think about data. Indeed, if R were to cease to exist tomorrow, these readers would still be well-situated to be data scientists. In a nutshell, that approach is what makes this such a successful textbook." ~The American Statistician "Baumer, Kaplan, and Horton have managed to write a book that will serve a huge variety of educators while being endlessly interesting and useful to students of a modern era. Modern Data Science in R is a compilation of ideas from both ends of the data science and statistics spectrum—tools for setting up databases and working with regular expressions are intermixed with fundamentals like regression analysis. Additionally, the authors pull together fantastic examples from the scientific community as well as the media at large. Their examples will engage today's students into understanding why data wrangling, reproducibility, and ethics are a fundamental part of any data analysis. Good visualization skills (Tukey) and ethical analyses (Hoff, "How to Lie with Statistics") are not new ideas. However, they have recently been lost in the drive for more sophisticated mathematical and computational methods for working with data. Baumer et al. modernize the need for good visualization and communication in ways that will resonate with today's practitioners. Like Wickham's "ggplot2" and "The Elements of Statistical Learning" by Hastie et al., "Modern Data Science in R" promises to be a staple on every data analyst's bookshelf. Accessible to students and a valuable resource for those who have been in the field for many years, this book promises to be a treasure you will want to discover." ~ Jo Hardin, Pomona College "This book would be an excellent text book for an introductory data science course. Many academic institutions are now trying to open data science programs. But, there is not a good text book available for data science courses." ~ Mahbubul Majumder, U. of Nebraska Omaha "The book is unique. It is an encyclopedia of Data Science, and it covers a wide variety of modern topics; another positive aspect is that it contains lots of examples and code, and the layout is quite catchy. One can learn (and teach) subjects as diverse as: How to give talks, administrating databases, how to model spatial data, and even ethics---all in one book." ~ Miguel de Carvalho, The University of Edinburgh "Modern Data Science with R is different . . .as it presents an abundance of R codes, functions and packages clearly with several useful examples. For people with a statistical background, the book covers computational topics like simulation and also includes appropriate computer science topics such as Data Wrangling, Database Querying using SQL and Text as Data. The book is well-structured and is presented in an easy-to-understand manner, making it suitable for a wide range of readers. . . This book is unique because it incorporates theoretical fundamentals such as statistical learning and regression modelling with the modern, practical elements of data science, including setting up databases and debugging . . . This book is a valuable resource to all those studying and interested in data science." ~ Shuangzhe Liu, University of Canberra "Modern Data Science with R is one of the first textbooks to provide a comprehensive introduction to data science for students at the undergraduate level (it is also suitable for graduate students and professionals in other fields). The authors follow the approach taken by Garrett Grolemund and Hadley Wickham in their book, R for Data Science, and David Robinson in Teach the Tidyverse to Beginners, which emphasizes the teaching of data visualization and the tidyverse (using dplyr and chained pipes) before covering base R, along with using real-world data and modern data science methods. The textbook includes end of chapter exercises (an instructor’s solution manual is available), and a series of lab activities is also under development. The result is an excellent textbook that provides a solid foundation in data science for students and professionals alike... Modern Data Science with R is a breakthrough textbook." ~ ACM SIGACT News "Only about 60 of the book’s 551 pages address the questions of uncertainty and inference that constitute the core of the statistics tradition. The remaining pages attend the other components of working with data—the import, wrangling, tidying, visualization, and storage—that are often the more prominent barriers to understanding modern datasets...Modern Data Science with R is a landmark: the first full textbook in data science. (It can serve) as the backbone of a semester-long course targeted at students with little background in statistics or computing. It is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics…By using the tidyverse, the textbook authors are able to seamlessly interweave a conceptual framework for data science with the corresponding implementation in R code….Even though this book is heavily dependent on R, readers come away with a more general natural language with which to talk and think about data. Indeed, if R were to cease to exist tomorrow, these readers would still be well-situated to be data scientists. In a nutshell, that approach is what makes this such a successful textbook." ~The American Statistician "Baumer, Kaplan, and Horton have managed to write a book that will serve a huge variety of educators while being endlessly interesting and useful to students of a modern era. Modern Data Science in R is a compilation of ideas from both ends of the data science and statistics spectrum—tools for setting up databases and working with regular expressions are intermixed with fundamentals like regression analysis. Additionally, the authors pull together fantastic examples from the scientific community as well as the media at large. Their examples will engage today's students into understanding why data wrangling, reproducibility, and ethics are a fundamental part of any data analysis. Good visualization skills (Tukey) and ethical analyses (Hoff, "How to Lie with Statistics") are not new ideas. However, they have recently been lost in the drive for more sophisticated mathematical and computational methods for working with data. Baumer et al. modernize the need for good visualization and communication in ways that will resonate with today's practitioners. Like Wickham's "ggplot2" and "The Elements of Statistical Learning" by Hastie et al., "Modern Data Science in R" promises to be a staple on every data analyst's bookshelf. Accessible to students and a valuable resource for those who have been in the field for many years, this book promises to be a treasure you will want to discover." ~ Jo Hardin, Pomona College "This book would be an excellent text book for an introductory data science course. Many academic institutions are now trying to open data science programs. But, there is not a good text book available for data science courses." ~ Mahbubul Majumder, U. of Nebraska Omaha "The book is unique. It is an encyclopedia of Data Science, and it covers a wide variety of modern topics; another positive aspect is that it contains lots of examples and code, and the layout is quite catchy. One can learn (and teach) subjects as diverse as: How to give talks, administrating databases, how to model spatial data, and even ethics---all in one book." ~ Miguel de Carvalho, The University of Edinburgh "It would undoubtedly be useful to many postgraduate students of applied statistics. The handbook style will also be of use to statisticians who want to keep up to date in this area. In particular the book utilizes functions from many different R packages, and will be helpful for data analysts to keep their R skills up to date. Although one of the appendices covers an introduction to R (R Core Team 2017) and RStudio (RStudio Team 2017), realistically it is expected that the reader has some experience with R. Existing R users with no experience of RStudio might find the appendix useful, but RStudio is not required to work through this book. Overall the book is well written, well structured and the general writing style is both objective and entertaining . . . The book is divided into three major parts, Introduction to Data Science, Statistics and Modeling, and Topics in Data Science, followed by six appendices . . . In conclusion, I recommend this book as a course companion to a master’s level course in data analysis and to statisticians who want to keep their skills in the field of data science up to date." ~ Tim Downie, Journal of Statistical Software "Modern Data Science with R is different . . .as it presents an abundance of R codes, functions and packages clearly with several useful examples. For people with a statistical background, the book covers computational topics like simulation and also includes appropriate computer science topics such as Data Wrangling, Database Querying using SQL and Text as Data. The book is well-structured and is presented in an easy-to-understand manner, making it suitable for a wide range of readers. . . This book is unique because it incorporates theoretical fundamentals such as statistical learning and regression modelling with the modern, practical elements of data science, including setting up databases and debugging . . . This book is a valuable resource to all those studying and interested in data science." ~Shuangzhe Liu, University of Canberra


Best Sellers


Product Details
  • ISBN-13: 9781498724579
  • Publisher: Taylor & Francis Inc
  • Publisher Imprint: Chapman & Hall/CRC
  • Language: English
  • No of Pages: 556
  • ISBN-10: 1498724574
  • Publisher Date: 16 Mar 2017
  • Binding: Digital (delivered electronically)
  • No of Pages: 582
  • Series Title: Chapman & Hall/CRC Texts in Statistical Science


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Modern Data Science with R: (Chapman & Hall/CRC Texts in Statistical Science)
Taylor & Francis Inc -
Modern Data Science with R: (Chapman & Hall/CRC Texts in Statistical Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Modern Data Science with R: (Chapman & Hall/CRC Texts in Statistical Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!