Modern Data Science with R
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Modern Data Science with R: (Chapman & Hall/CRC Texts in Statistical Science)
Modern Data Science with R: (Chapman & Hall/CRC Texts in Statistical Science)

Modern Data Science with R: (Chapman & Hall/CRC Texts in Statistical Science)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

From a review of the first edition: "Modern Data Science with R… is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics" (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice.

Table of Contents:
I Part I: Introduction to Data Science. 1. Prologue: Why data science? 2. Data visualization. 3. A grammar for graphics. 4. Data wrangling on one table. 5. Data wrangling on multiple tables. 6. Tidy data. 7. Iteration. 8. Data science ethics. II. Part II: Statistics and Modeling. 9. Statistical foundations. 10. Predictive modeling. 11. Supervised learning. 12. Unsupervised learning. 13. Simulation. III Part III: Topics in Data Science. 14. Dynamic and customized data graphics. 15. Database querying using SQL. 16. Database administration. 17. Working with spatial data. 18.Geospatial computations. 19. Text as data. 20. Network science. IV Part IV: Appendices.

About the Author :
Benjamin S. Baumer is an associate professor in the Statistical & Data Sciences program at Smith College. He has been a practicing data scientist since 2004, when he became the first full-time statistical analyst for the New York Mets. Ben is a co-author of The Sabermetric Revolution and Analyzing Baseball Data with R. He received the 2019 Waller Education Award and the 2016 Significant Contributor Award from the Society for American Baseball Research. Daniel T. Kaplan is the DeWitt Wallace emeritus professor of mathematics and computer science at Macalester College. He is the author of several textbooks on statistical modeling and statistical computing. Danny received the 2006 Macalester Excellence in Teaching award and the 2017 CAUSE Lifetime Achievement Award. Nicholas J. Horton is Beitzel Professor of Technology and Society (Statistics and Data Science) at Amherst College. He is a Fellow of the ASA and the AAAS, co-chair of the National Academies Committee on Applied and Theoretical Statistics, recipient of a number of national teaching awards, author of a series of books on statistical computing, and actively involved in data science curriculum efforts to help students "think with data".

Review :
"This text continues to be fantastic! There are a number of courses for which I would require this book and others that I would recommend it as a supplement. I would likely require it for courses focused on computing in R or courses in data science. I would include it as a recommended text in introductory and other statistics courses that used R as the software of choice, where this text could be used as a supplemental resource in how to use R to work with data." (Hunter Glanz Cal Poly San Luis Obispo) "Easy for students to read and relate to the exercises and examples. Many questions and hands-on activities with data sets to practice skills." (Lynn Collen, St. Cloud Stat Univ.) "I used the first edition of this book as the primary text for an intermediate data science course a few years ago and I liked it very much…I think that the technical breadth, writing style, and level of difficulty are very clear strengths. Also, my students and I found the `tidyverse` approach to be particularly well-suited for teaching and learning R…and I love that the MDSR book includes such complete code. Students can program everything they see in the book, and often times there are tips & tricks for them to discover along the way just by studying expert code provided by the authors. This really sets MDSR apart from other books I considered for the course." (Matthew Beckman, Penn State University) "The authors have successfully completed the job of choosing the content with relevant topics and, deciding the extent of knowledge to be delivered, and finally, putting them in an understandable sequence. This is a well-written book and does not cover much theory. .. The book’s second edition contents are updated, expanded, revised, split, rewritten and rearranged compared to the first edition. The key changes are the use of recently developed R packages, .... (and) updated exercises in the chapters ..." -Shalabh, in Journal of the Royal Statistical Society Series A, August 2021 "[This book] provides an excellent basis for statisticians who want to dig deeper into, for example, data handling, for computer scientists who aim to strengthen their knowledge of statistical methods as well as for all other researchers who are interested in data science in general. ... Each section is structured as an interplay between R-code and explanatory text for understanding. The division into several stand-alone segments is an advantage, because the reader may easily choose the section she or he is interested in without missing relevant information. A key feature of the book is its focus on different example data sets that are available via R-packages or from URLs that are embedded in the text. These data sets are used to illustrate the methodology presented using R-code. Their availability allows the reader to reproduce the code while working with the book. ... It can be warmly recommended to practical researchers who seek a comprehensive overview of different topics in data science with focus on implementations in R." -Annika Hoyer, in Biometrical Journal, August 2021 "This text continues to be fantastic! There are a number of courses for which I would require this book and others that I would recommend it as a supplement. I would likely require it for courses focused on computing in R or courses in data science. I would include it as a recommended text in introductory and other statistics courses that used R as the software of choice, where this text could be used as a supplemental resource in how to use R to work with data." -Hunter Glanz, Cal Poly San Luis Obispo "Easy for students to read and relate to the exercises and examples. Many questions and hands-on activities with data sets to practice skills." -Lynn Collen, St. Cloud Stat University "I used the first edition of this book as the primary text for an intermediate data science course a few years ago and I liked it very much…I think that the technical breadth, writing style, and level of difficulty are very clear strengths. Also, my students and I found the `tidyverse` approach to be particularly well-suited for teaching and learning R…and I love that the MDSR book includes such complete code. Students can program everything they see in the book, and often times there are tips & tricks for them to discover along the way just by studying expert code provided by the authors. This really sets MDSR apart from other books I considered for the course." -Matthew Beckman, Penn State University


Best Sellers


Product Details
  • ISBN-13: 9780429573286
  • Publisher: Taylor & Francis Ltd
  • Publisher Imprint: Routledge Cavendish
  • Language: English
  • No of Pages: 632
  • ISBN-10: 0429573286
  • Publisher Date: 13 Apr 2021
  • Binding: Digital (delivered electronically)
  • No of Pages: 650
  • Series Title: Chapman & Hall/CRC Texts in Statistical Science


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Modern Data Science with R: (Chapman & Hall/CRC Texts in Statistical Science)
Taylor & Francis Ltd -
Modern Data Science with R: (Chapman & Hall/CRC Texts in Statistical Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Modern Data Science with R: (Chapman & Hall/CRC Texts in Statistical Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!