Buy Solid Hydrogen Book by Jan Kranendonk - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Physics > Materials / States of matter > Condensed matter physics > Solid Hydrogen: Theory of the Properties of Solid H2, HD, and D2
36%
Solid Hydrogen: Theory of the Properties of Solid H2, HD, and D2

Solid Hydrogen: Theory of the Properties of Solid H2, HD, and D2


     0     
5
4
3
2
1



Available


X
About the Book

The solid molecular hydrogens are the simplest and most fundamental molecular solids. Except at ultrahigh pressures on the order of a few mega- bars, where a transition to a metallic, atomic phase is expected, these solids are true molecular crystals in which the molecules retain their identity with properties not too different from those of the free molecules. At energies below the electronic excitation energy, the thermal and spectroscopic pro- perties of these solids are determined by the translational, rotational, and intramolecular vibrational motions of the interacting molecules. The theo- retical analysis of the solid-state properties in terms of the free molecules and the intermolecular interactions forms the main topic of this book. The available detailed knowledge of the properties of the free molecules makes it feasible to carry out this program to a large extent on the basis of first principles, and this is one of the attractive features of these systems. The solid hydrogens are dominated by quantum effects, the most out- standing property being that the rotation of the molecules is free down to the lowest temperatures, in the sense that the rotational quantum number J characterizing the rotational motion of the free molecules remains a good quantum number in all of the solid-state phases except at ultrahigh pressures.

Table of Contents:
1. Properties of Isolated Hydrogen Molecules.- 1.1 The Adiabatic Approximation.- 1.2 The Rotation-Vibration States.- 1.3 The Molecular Multipole Moments and Polarizabilities.- 1.4 The Dunham Model.- 1.5 Nuclear Symmetry Species for Homonuclear Molecules.- References.- 2. The Intermolecular Interaction.- 2.1 Definition of the Intermolecular Interactions.- 2.2 The Long-Range Intermolecular Interactions.- 2.3 The Short-Range Intermolecular Interactions.- 2.4 Models for the Pair Potential.- References.- 3. Pure Vibrational Excitations.- 3.1 The fcc and hcp Structures.- 3.2 Single-Molecule Perturbations.- 3.3 Vibrational Energy Bands.- 3.4 Localized Vibrational States.- 3.5 The Vibrational Raman Spectrum.- References.- 4. Rotational Excitations in J = 0 Solids.- 4.1 Crystal-Field Interactions.- 4.2 Pure Rotational Excitations.- 4.3 Mixed Rotation-Vibration Excitations.- 4.4 Rotation Raman and Infrared Spectra.- References.- 5. Lattice Vibrations and Elastic Properties.- 5.1 Lattice Vibrations in the Harmonic Approximation.- 5.2 Lattice Vibrations in Quantum Crystals.- 5.3 Elastic Properties and the Anisotropic Debye Model for the hcp Lattice.- 5.4 Two-Particle Distribution Functions and Correlation Matrices.- References.- 6. Single J = 1 Impurities in J = 0 Solids.- 6.1 Crystal-Field Interactions in a Rigid Lattice.- 6.2 Effect of Static Phonon Renormalization.- 6.3 Dynamic Crystal-Field Effects.- 6.4 Specific Heat and NMR Properties.- References.- 7. Clusters of J = 1 Impurities in J = 0 Solids.- 7.1 Models for Cluster Distributions.- 7.2 Properties of Isolated Clusters.- 7.3 Spectroscopy of nn Pairs of J = 1 Molecules.- 7.4 Finer Details of the nn Pair Interaction.- 7.5 Interactions between More Distant Neighbors.- References.- 8. The Ordered Phases.- 8.1 Orientational andStructural Phase Changes.- 8.2 The Four-Sublattice Structure of Pure J = 1 Solids.- 8.3 The Order-Disorder Transition in the fcc Solids.- 8.4 Librons in Pure J = 1 Solids.- 8.5 J = 0 Impurities in J = 1 Solids.- 8.6 Ordering in J = 0 Solids at Ultrahigh Pressures.- References.- 9. Rotation Diffusion and Ortho-Para Conversion.- 9.1 Ortho-Para Conversion Processes.- 9.2 Rotation Diffusion at Small J = 1 Concentrations.- 9.3 Rotation Diffusion at Small J = 0 Concentrations.- 9.4 Experimental Results on Rotation Diffusion.- References.- Appendix A. Spherical Tensor Formalism.- Appendix B. Lattice Sums.


Best Sellers


Product Details
  • ISBN-13: 9781468443035
  • Publisher: Springer-Verlag New York Inc.
  • Publisher Imprint: Springer-Verlag New York Inc.
  • Height: 229 mm
  • No of Pages: 306
  • Returnable: N
  • Width: 152 mm
  • ISBN-10: 1468443038
  • Publisher Date: 27 Jul 2013
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Sub Title: Theory of the Properties of Solid H2, HD, and D2


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Solid Hydrogen: Theory of the Properties of Solid H2, HD, and D2
Springer-Verlag New York Inc. -
Solid Hydrogen: Theory of the Properties of Solid H2, HD, and D2
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Solid Hydrogen: Theory of the Properties of Solid H2, HD, and D2

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!