Introduction to Solid-State NMR Spectroscopy
Home > Mathematics and Science Textbooks > Chemistry > Physical chemistry > Solid state chemistry > Introduction to Solid-State NMR Spectroscopy
Introduction to Solid-State NMR Spectroscopy

Introduction to Solid-State NMR Spectroscopy


     0     
5
4
3
2
1



International Edition


X
About the Book

Introduction to Solid State NMR Spectroscopy is written for undergraduate and graduate students of chemistry, either taking a course in advanced or solid-state nuclear magnetic resonance spectroscopy or undertaking research projects where solid-state NMR is likely to be a major investigative technique. It will also serve as a practical introduction in industry, where the techniques can provide new or complementary information to supplement other investigative techniques. By covering solid-state NMR spectroscopy in a clear, straightforward and approachable way with detailed descriptions of the major solid-state NMR experiments focussing on what the experiments do and what they tell the researcher, this book will serve as an ideal introduction to the subject. These descriptions are backed up by separate mathematical explanations for those who wish to gain a more sophisticated quantitative understanding of the phenomena. With additional coverage of the practical implementation of solid-state NMR experiments integrated into the discussion, this book will be essential reading for all those using, or about to use, solid-state NMR spectroscopy. Dr Melinda Duer is a senior lecturer in the Department of Chemistry at the University of Cambridge, Cambridge, UK.

Table of Contents:
Preface, xii Acknowledgements, xv 1 The Basics of NMR, 1 1.1 The vector model of pulsed NMR, 1 1.1.1 Nuclei in a static, uniform magnetic field, 2 1.1.2 The effect of rf pulses, 3 1.2 The quantum mechanical picture: hamiltonians and the Schrödinger equation, 5 Box 1.1 Quantum mechanics and NMR, 6 Wavefunctions, 6 Operators, physical observables and expectation values, 7 Schrödinger’s equation, eigenfunctions and eigenvalues, 7 Spin operators and spin states, 8 Dirac’s bra-ket notation, 11 Matrices, 11 1.2.1 Nuclei in a static, uniform field, 12 1.2.2 The effect of rf pulses, 15 Box 1.2 Exponential operators, rotation operators and rotations, 19 Rotation of vectors, wavefunctions and operators (active rotations), 20 Rotation of axis frames, 23 Representation of rf fields, 25 Euler angles, 25 Rotations with Euler angles, 26 Rotation of Cartesian axis frames, 27 1.3 The density matrix representation and coherences, 29 1.3.1 Coherences and populations, 30 1.3.2 The density operator at thermal equilibrium, 33 1.3.3 Time evolution of the density matrix, 34 1.4 Nuclear spin interactions, 37 1.4.1 Interaction tensors, 41 1.5 General features of Fourier transform NMR experiments, 43 1.5.1 Multidimensional NMR, 43 1.5.2 Phase cycling, 46 1.5.3 Quadrature detection, 48 Box 1.3 The NMR spectrometer, 53 Generating rf pulses, 53 Detecting the NMR signal, 56 Notes, 58 References, 59 2 Essential Techniques for Solid-State NMR, 60 2.1 Introduction, 60 2.2 Magic-angle spinning (MAS), 61 2.2.1 Spinning sidebands, 62 2.2.2 Rotor or rotational echoes, 67 2.2.3 Removing spinning sidebands, 67 2.2.4 Setting the magic-angle and spinning rate, 72 2.2.5 Magic-angle spinning for homonuclear dipolar couplings, 75 2.3 Heteronuclear decoupling, 77 2.3.1 High-power decoupling, 78 2.3.2 Other heteronuclear decoupling sequences, 81 2.4 Homonuclear decoupling, 83 2.4.1 Implementing homonuclear decoupling sequences, 83 Box 2.1 Average hamiltonian theory and the toggling frame, 86 Average hamiltonian theory, 86 The toggling frame and the WAHUHA pulse sequence, 89 2.5 Cross-polarization, 96 2.5.1 Theory, 97 2.5.2 Setting up the cross-polarization experiment, 101 Box 2.2 Cross-polarization and magic-angle spinning, 106 2.6 Echo pulse sequences, 110 Notes, 113 References, 114 3 Shielding and Chemical Shift: Theory and Uses, 116 3.1 Theory, 116 3.1.1 Introduction, 116 3.1.2 The chemical shielding hamiltonian, 117 3.1.3 Experimental manifestations of the shielding tensor, 120 3.1.4 Definition of the chemical shift, 123 3.2 The relationship between the shielding tensor and electronic structure, 125 3.3 Measuring chemical shift anisotropies, 131 3.3.1 Magic-angle spinning with recoupling pulse sequences, 132 3.3.2 Variable-angle spinning experiments, 135 3.3.3 Magic-angle turning, 138 3.3.4 Two-dimensional separation of spinning sideband patterns, 141 3.4 Measuring the orientation of chemical shielding tensors in the molecular frame for structure determination, 145 Notes, 149 References, 149 4 Dipolar Coupling: Theory and Uses, 151 4.1 Theory, 151 4.1.1 Homonuclear dipolar coupling, 154 Box 4.1 Basis sets for multispin systems, 156 4.1.2 The effect of homonuclear dipolar coupling on a spin system, 157 4.1.3 Heteronuclear dipolar coupling, 160 4.1.4 The effect of heteronuclear dipolar coupling on the spin system, 162 4.1.5 Heteronuclear spin dipolar coupled to a homonuclear network of spins, 163 4.1.6 The spherical tensor form of the dipolar hamiltonian, 164 Box 4.2 The dipolar hamiltonian in terms of spherical tensor operators, 164 Spherical tensor operators, 165 Interaction tensors, 167 The homonuclear dipolar hamiltonian under static and MAS conditions, 167 4.2 Introduction to the uses of dipolar coupling, 172 4.3 Techniques for measuring homonuclear dipolar couplings, 175 4.3.1 Recoupling pulse sequences, 175 Box 4.3 Analysis of the DRAMA pulse sequence, 180 Simulating powder patterns from the DRAMA experiment, 184 4.3.2 Double-quantum filtered experiments, 185 Box 4.4 Excitation of double-quantum coherence under magic-angle spinning, 189 The form of the reconversion pulse sequence: the need for timereversal symmetry, 191 Analysis of the double-quantum filtered data, 195 Box 4.5 Analysis of the C7 pulse sequence for exciting double-quantum coherence in dipolar-coupled spin pairs, 196 4.3.3 Rotational resonance, 199 Box 4.6 Theory of rotational resonance, 202 Effect of H ˆ ∆ term on the density operator, 203 The hamiltonian in the new rotated frame, 204 The average hamiltonian, 205 4.4 Techniques for measuring heteronuclear dipolar couplings, 207 4.4.1 Spin-echo double resonance (SEDOR), 207 4.4.2 Rotational-echo double resonance (REDOR), 208 Box 4.7 Analysis of the REDOR experiment, 210 4.5 Techniques for dipolar-coupled quadrupolar–spin-1–2 pairs, 215 4.5.1 Transfer of population in double resonance (TRAPDOR), 216 4.5.2 Rotational-echo adiabatic-passage double-resonance (REAPDOR), 219 4.6 Techniques for measuring dipolar couplings between quadrupolar nuclei, 220 4.7 Correlation experiments, 221 4.7.1 Homonuclear correlation experiments for spin-1–2 systems, 221 4.7.2 Homonuclear correlation experiments for quadrupolar spin systems, 224 4.7.3 Heteronuclear correlation experiments for spin-1–2, 226 4.8 Spin-counting experiments, 227 4.8.1 The formation of multiple-quantum coherences, 228 4.8.2 Implementation of spin-counting experiments, 231 Notes, 232 References, 233 5 Quadrupole Coupling: Theory and Uses, 235 5.1 Introduction, 235 5.2 Theory, 237 5.2.1 The quadrupole hamiltonian, 237 Box 5.1 The quadrupole hamiltonian in terms of spherical tensor operators: the effect of the rotating frame and magic-angle spinning, 242 The quadrupole hamiltonian in terms of spherical tensor operators, 242 The effect of the rotating frame: first- and second-order average hamiltonians for the quadrupole interaction, 243 The energy levels under quadrupole coupling, 248 The effect of magic-angle spinning, 248 5.2.2 The effect of rf pulses, 249 5.2.3 The effects of quadrupolar nuclei on the spectra of spin-1–2 nuclei, 252 5.3 High-resolution NMR experiments for half-integer quadrupolar nuclei, 255 5.3.1 Magic-angle spinning (MAS), 256 5.3.2 Double rotation (DOR), 259 5.3.3 Dynamic-angle spinning (DAS), 260 5.3.4 Multiple-quantum magic-angle spinning (MQMAS), 263 5.3.5 Satellite transition magic-angle spinning (STMAS), 268 5.3.6 Recording two-dimensional datasets for DAS, MQMAS and STMAS, 275 5.4 Other techniques for half-integer quadrupole nuclei, 280 5.4.1 Quadrupole nutation, 282 5.4.2 Cross-polarization, 285 Notes, 290 References, 291 6 NMR Techniques for Studying Molecular Motion in Solids, 293 6.1 Introduction, 293 6.2 Powder lineshape analysis, 296 6.2.1 Simulating powder pattern lineshapes, 297 6.2.2 Resolving powder patterns, 305 6.2.3 Using homonuclear dipolar-coupling lineshapes – the WISE experiment, 311 6.3 Relaxation time studies, 313 6.4 Exchange experiments, 316 6.4.1 Achieving pure absorption lineshapes in exchange spectra, 318 6.4.2 Interpreting two-dimensional exchange spectra, 320 6.5 2H NMR, 322 6.5.1 Measuring 2H NMR spectra, 323 6.5.2 2H lineshape simulations, 328 6.5.3 Relaxation time studies, 329 6.5.4 2H exchange experiments, 330 6.5.5 Resolving 2H powder patterns, 332 Notes, 334 References, 335 Appendix A NMR Properties of Commonly Observed Nuclei, 336 Appendix B The General Form of a Spin Interaction Hamiltonian in Terms of Spherical Tensors and Spherical Tensor Operators, 337 References, 343 Index, 344 

About the Author :
Dr Melinda Duer is a senior lecturer in the Department of Chemistry at the University of Cambridge, Cambridge, UK

Review :
"Overall this is an excellent book and one that I personally will find very useful. I will recommend it to my postgraduate students and prostdoctoral research fellows for its detailed and careful explanations of a wide range of experimental methods in solid-state NMR spectroscopy." "The book is clear and straightforward...the level of detail is very impressive and the author does not shirk her duty to explain some of the most notoriously difficult concepts in this area." Chemistry World, Vol 2, No 1, January 2005 "The theoretical approaches, the description of methods and the demonstration of the applications are clearly given in this book, which can be recommended to students and researchers in physical, analytical and organic chemistry and also biology who need access to solid-state NMR for the characterization of structures and dynamics of chemical or biological compounds.” Magnetic Resonance in Chemistry, 2004, vol 42


Best Sellers


Product Details
  • ISBN-13: 9781405109147
  • Publisher: John Wiley and Sons Ltd
  • Publisher Imprint: Wiley-Blackwell
  • Height: 239 mm
  • No of Pages: 368
  • Returnable: N
  • Weight: 762 gr
  • ISBN-10: 1405109149
  • Publisher Date: 02 Jun 2004
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Spine Width: 20 mm
  • Width: 170 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Introduction to Solid-State NMR Spectroscopy
John Wiley and Sons Ltd -
Introduction to Solid-State NMR Spectroscopy
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Introduction to Solid-State NMR Spectroscopy

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!