Buy Effect of Cyclic Compression on Cytoskeleton Remodeling and Cell Matrix Interaction of Hmscs Encapsulated in Three Dimensional Type I Collagen Matrix
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Mechanical engineering > Effect of Cyclic Compression on Cytoskeleton Remodeling and Cell Matrix Interaction of Hmscs Encapsulated in Three Dimensional Type I Collagen Matrix
Effect of Cyclic Compression on Cytoskeleton Remodeling and Cell Matrix Interaction of Hmscs Encapsulated in Three Dimensional Type I Collagen Matrix

Effect of Cyclic Compression on Cytoskeleton Remodeling and Cell Matrix Interaction of Hmscs Encapsulated in Three Dimensional Type I Collagen Matrix


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Effect of Cyclic Compression on Cytoskeleton Remodeling and Cell Matrix Interaction of HMSCs Encapsulated in Three Dimensional Type I Collagen Matrix" by Fu-chak, Ho, 何富澤, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: The potential of determining stem cell fate through mechanoregulation has been demonstrated recently. However, the underlying mechanism remains largely unknown. Previously, we developed a novel microencapsulation technique to entrap cells in a nanofibrous collagen meshwork and use the cell-collagen model to study mechanoregulation of human mesenchymal stem cells (hMSCs). Initially, hMSCs were randomly distributed within the construct. Upon cyclic compression, hMSCs reoriented towards a direction along the loading axis. Cytoskeleton, being the major sub-cellular machinery supporting cell shape and motility, should play crucial role in sensing and responding mechanical signals. Therefore, a better understanding in the change of cytoskeleton and associated molecules upon mechanical loading is a prerequisite to rationalizing the loading regimes for stem cell-based functional tissue engineering. In the current project, we hypothesize that hMSCs encapsulated in 3D collagen construct will respond to cyclic compression by remodeling the cytoskeleton structures and altering the interactions with collagen matrix. hMSCs collagen construct were cyclically compressed for 9 hours through micromanipulator based compression system. After compression, constructs were harvested either immediately after compression, 2 hours after compression and 24 hours compression, together with non-loading control group. Here, we report compression-induced novel changes in cytoskeleton. Firstly, omnidirectional filopodia-like structures together with stress fibers bucking were observed immediately after 9hrs of cyclic compression. Secondly, actin patches were observed shortly after removal of 9hrs compression before the actin fibers resumed. Apart from exhibiting similar morphology with filopodia, the omnidirectional filopodia-like structures may share a similar function in interacting with ECM. Co-localization of the major membrane-bound matrix metalloproteinases MT1-MMP with actin staining was found along the length of the filopodia-like structures. A local collagen digestion zone, characterized by the presence of collagenase cleaved collage, was found co-localizing at least partially with the filopodia-like structures around the cell. Whether creating pericellular collagen digestion zone was mediated by MT1-MMP along the compression-induced filopodia like structures and what functions the digestion zone serves are interesting question to answer in the future. Another interesting observation is the complete disassembly of pre-existing stress fibers followed by formation by numerous actin patches throughout the cell shortly after removal of the compression loading. Stress fibers reformed in 24 hours after removal of the loading. Quantitative measurement of F: G actin ratio agrees with such disassembly and reassembly dynamics. Colocalization of actin branching protein arp2/3 with the actin patches was found, suggesting that mechanically loaded hMSCs were re-establishing actin cytoskeleton network from these nucleation centers. Further studies are required to figure out the underlying significance of the loading-induced cytoskeleton dynamics in hMSCs and whether the actin patches Arp2/3 complex associates with endocytosis of cleaved collagen fragments. DOI: 10.5353/th_b5185943 Subjects: Cytoskeleton Stem cells


Best Sellers


Product Details
  • ISBN-13: 9781361338162
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 242
  • Weight: 848 gr
  • ISBN-10: 1361338164
  • Publisher Date: 26 Jan 2017
  • Binding: Hardback
  • Language: English
  • Spine Width: 14 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Effect of Cyclic Compression on Cytoskeleton Remodeling and Cell Matrix Interaction of Hmscs Encapsulated in Three Dimensional Type I Collagen Matrix
Open Dissertation Press -
Effect of Cyclic Compression on Cytoskeleton Remodeling and Cell Matrix Interaction of Hmscs Encapsulated in Three Dimensional Type I Collagen Matrix
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Effect of Cyclic Compression on Cytoskeleton Remodeling and Cell Matrix Interaction of Hmscs Encapsulated in Three Dimensional Type I Collagen Matrix

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!