Statistical Inference for Some Econometric Time Series Models
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Statistical Inference for Some Econometric Time Series Models
Statistical Inference for Some Econometric Time Series Models

Statistical Inference for Some Econometric Time Series Models


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Statistical Inference for Some Econometric Time Series Models" by Yang, Li, 李杨, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: With the increasingly economic activities, people have more and more interest in econometric models. There are two mainstream econometric models which are very popular in recent decades. One is quantile autoregressive (QAR) model which allows varying-coefficients in linear time series and greatly promotes the ranges of regression research. The first topic of this thesis is to focus on the modeling of QAR model. We propose two important measures, quantile correlation (QCOR) and quantile partial correlation (QPCOR). We then apply them to QAR models, and introduce two valuable quantities, the quantile autocorrelation function (QACF) and the quantile partial autocorrelation function (QPACF). This allows us to extend the Box-Jenkins three-stage procedure (model identification, model parameter estimation, and model diagnostic checking) from classical autoregressive models to quantile autoregressive models. Specifically, the QPACF of an observed time series can be employed to identify the autoregressive order, while the QACF of residuals obtained from the model can be used to assess the model adequacy. We not only demonstrate the asymptotic properties of QCOR, QPCOR, QACF and PQACF, but also show the large sample results of the QAR estimates and the quantile version of the Ljung- Box test. Moreover, we obtain the bootstrap approximations to the distributions of parameter estimators and proposed measures. Simulation studies indicate that the proposed methods perform well in finite samples, and an empirical example is presented to illustrate the usefulness of QAR model. The other important econometric model is autoregressive conditional duration (ACD) model which is developed with the purpose of depicting ultra high frequency (UHF) financial time series data. The second topic of this thesis is designed to incorporate ACD model with one of the extreme value distributions, i.e. Frechet distribution. We apply the maximum likelihood estimation (MLE) to Frechet ACD models and derive its generalized residuals for model adequacy checking. It is noteworthy that simulations show a relative greater sensitiveness in the linear parameters to sampling errors. This phenomenon successfully reflects the skewness of the Frechet distribution and suggests a method to practitioners in proceeding model accuracy. Furthermore, we present the empirical sizes and powers for Box-Pierce, Ljung-Box and modified Box-Pierce statistics as comparisons of the proposed portmanteau statistic. In addition to the Frechet ACD, we also systematically analyze theWeibull ACD, where the Weibull distribution is the other nonnegative extreme value distribution. The last topic of the thesis explains the estimation and diagnostic checking the Weibull ACD model. By investigating the MLE in this model, there exhibits a slight sensitiveness in linear parameters. However, there is an obvious phenomenon on the trade-off between the skewness of Weibull distribution and the sampling error when the simulations are conducted. Moreover, the asymptotic properties are also studied for the generalized residuals and a goodness-of-fit test is employed to obtain a portmanteau statistic. Through the simulation results in size and power, it shows that Weibull ACD is superior to Frechet ACD in specifying the wrong model. This is meaningful in practice. DOI: 10.5353/th_b5153693 Subjects: Econometrics Time-series analysis


Best Sellers


Product Details
  • ISBN-13: 9781361330562
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 138
  • Weight: 612 gr
  • ISBN-10: 1361330562
  • Publisher Date: 26 Jan 2017
  • Binding: Hardback
  • Language: English
  • Spine Width: 10 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Statistical Inference for Some Econometric Time Series Models
Open Dissertation Press -
Statistical Inference for Some Econometric Time Series Models
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Statistical Inference for Some Econometric Time Series Models

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!