Statistical Inference for Some Discrete-Valued Time Series
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Statistical Inference for Some Discrete-Valued Time Series
Statistical Inference for Some Discrete-Valued Time Series

Statistical Inference for Some Discrete-Valued Time Series


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This dissertation, "Statistical Inference for Some Discrete-valued Time Series" by Chao, Wang, 王超, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Some problems of' statistical inference for discrete-valued time series are investigated in this study. New statistical theories and methods are developed which may aid us in gaining more insight into the understanding of discrete-valued time series data. The first part is concerned with the measurement of the serial dependence of binary time series. In early studies the classical autocorrelation function was used, which, however, may not be an effective and informative means of revealing the dependence feature of a binary time series. Recently, the autopersistence function has been proposed as an alternative to the autocorrelation function for binary time series. The theoretical autopersistence functions and their sample analogues, the autopersistence graphs, are studied within a binary autoregressive model. Some properties of the autopcrsistencc functions and the asymptotic properties of the autopersistence graphs are discussed, justifying that the antopersistence graphs can be used to assess the dependence feature. Besides binary time series, intcger-vall1ed time series arc perhaps the most commonly seen discrete-valued time series. A generalization of the Poisson autoregression model for non-negative integer-valued time series is proposed by imposing an additional threshold structure on the latent mean process of the Poisson autoregression. The geometric ergodicity of the threshold Poisson autoregression with perburbations in the latent mean process and the stochastic stability of the threshold Poisson autoregression are obtained. The maximum likelihood estimator for the parameters is discussed and the conditions for its consistency and asymptotic normally are given as well. Furthermore, there is an increasing need for models of integer-valued time series which can accommodate series with negative observations and dependence structure more complicated than that of an autoregression or a moving average. In this regard, an integer-valued autoregressive moving average process induced by the so-called signed thinning operator is proposed. The first-order model is studied in detail. The conditions for the existence of stationary solution and the existence of finite moments are discussed under general assumptions. Under some further assumptions about the signed thinning operators and the distribution of the innovation, a moment-based estimator for the parameters is proposed, whose consistency and asymptotic normality are also proved. The problem of conducting one-step-ahead forecast is also considered based on hidden Markov chain theory. Simulation studies arc conducted to demonstrate the validity of the theories and methods established above. Real data analysis such as the annual counts of major earthquakes data are also presented to show their potential usefulness in applications. DOI: 10.5353/th_b4832951 Subjects: Time-series analysis Discrete-time systems Mathematical statistics


Best Sellers


Product Details
  • ISBN-13: 9781361280898
  • Publisher: Open Dissertation Press
  • Publisher Imprint: Open Dissertation Press
  • Height: 279 mm
  • No of Pages: 138
  • Weight: 612 gr
  • ISBN-10: 1361280891
  • Publisher Date: 26 Jan 2017
  • Binding: Hardback
  • Language: English
  • Spine Width: 10 mm
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Statistical Inference for Some Discrete-Valued Time Series
Open Dissertation Press -
Statistical Inference for Some Discrete-Valued Time Series
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Statistical Inference for Some Discrete-Valued Time Series

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!