Deterministic and Stochastic Modeling in Computational Electromagnetics
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Physics > Classical mechanics > Wave mechanics (vibration and acoustics) > Deterministic and Stochastic Modeling in Computational Electromagnetics: Integral and Differential Equation Approaches(IEEE Press Series on Electromagnetic Wave Theory)
Deterministic and Stochastic Modeling in Computational Electromagnetics: Integral and Differential Equation Approaches(IEEE Press Series on Electromagnetic Wave Theory)

Deterministic and Stochastic Modeling in Computational Electromagnetics: Integral and Differential Equation Approaches(IEEE Press Series on Electromagnetic Wave Theory)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Help protect your network with this important reference work on cyber security Deterministic computational models are those for which all inputs are precisely known, whereas stochastic modeling reflects uncertainty or randomness in one or more of the data inputs. Many problems in computational engineering therefore require both deterministic and stochastic modeling to be used in parallel, allowing for different degrees of confidence and incorporating datasets of different kinds. In particular, non-intrusive stochastic methods can be easily combined with widely-used deterministic approaches, enabling this more robust form of data analysis to be applied to a range of computational challenges. Deterministic and Stochastic Modeling in Computational Electromagnetics provides a rare treatment of parallel deterministic-stochastic computational modeling and its beneficial applications. Unlike other works of its kind, which generally treat deterministic and stochastic modeling in isolation from one another, it aims to demonstrate the usefulness of a combined approach and present particular use-cases in which such an approach is clearly required. It offers a non-intrusive stochastic approach which can be incorporated with minimal effort into virtually all existing computational models. Readers will also find: A range of specific examples demonstrating the efficiency of deterministic-stochastic modeling Computational examples of successful applications including ground penetrating radars (GPR), radiation from 5G systems, transcranial magnetic and electric stimulation (TMS and TES), and more Introduction to fundamental principles in field theory to ground the discussion of computational modeling Deterministic and Stochastic Modeling in Computational Electromagnetics is a valuable reference for researchers, including graduate and undergraduate students, in computational electromagnetics, as well as to multidisciplinary researchers, engineers, physicists, and mathematicians.

Table of Contents:
1.            Least Action Principle in electromagnetics             2 1.1. Hamilton principle   2 1.2. Newton equation of motion from Lagrangian              5 1.3. Noether’s theorem and conservation laws    7 1.4. Equation of continuity from Lagrangian         10 1.5. Lorentz force from Gauge Invariance              14 2.            Fundamental Equations of Engineering Electromagnetics               17 2.1. Derivation of two canonical Maxwell equation            17 2.2. Derivation of two dynamical Maxwell equation          18 2.3. Integral form of Maxwell equations, continuity equations and Lorentz force  21 2.4. Phasor form of Maxwell equations   22 2.4. Continuity (interface) conditions       24 2.5. Poynting theorem    25 3.            Variational methods in electromagnetics               40 3.1. Analytical methods  40 3.2. Capacity of insulated charged sphere              40 3.3.        Spherical Grounding resistance   42 3.4. Variational basis for numerical methods        43 4.            Outline of numerical methods     47 4.1. Variational basis for numerical methods        50 4.2. The Finite Element Method (FEM)    51 4.2.1 Basic concepts of FEM – One dimensional FEM        52 4.3.2 Linear and quadratic elements         74 4.3.2 Quadratic elements              75 4.3.4 Numerical solution of integral equations over unknown sources       76 5.            Wire Configurations - Frequency Domain Analysis              79 5.1. Single wire in a presence of a lossy half-space             79 5.1.1 Horizontal dipole above a homogeneous lossy half-space    79 5.1.2 Horizontal dipole buried in a homogeneous lossy half-space              84 5.2 Horizontal dipole above a multi-layered lossy half-space         88 5.2.1 Integral equation formulation          88 5.2.2 Radiated field         93 5.2.3 Numerical results   95 5.3 Wire Array above a multilayer             114 5.3.1. Formulation           116 5.3.2 Numerical procedures         118 5.3.3 Computational examples    120 5.4. Wires of arbitrary shape radiating over a layered medium      137 5.4.1. Curved single wire in free space     139 5.4.2. Curved single wire in a presence of a lossy half-space          140 5.4.3.  Multiple curved wires       142 5.4.5.  Electromagnetic field coupling to arbitrarily shaped aboveground wires     151 5.4.5.  Buried wires of arbitrary shape     161 5.5. Complex Power of Arbitrarily Shaped Thin Wire Radiating above a Lossy Half-space   168 5.5.1. Theoretical background     169 5.5.2. Numerical results 172 6. Wire Configurations - Time Domain Analysis    185 6.1 Single Wire above a Lossy Ground      186 6.1.1. Case of perfectly conducting ground (PEC) gound and dielectric half-space 190 6.1.2 Modified reflection coefficient for the case of an imperfect ground 191 6.2 Numerical solution of Hallen equation via Galerkin-Bubnov Indirect Boundary Element Method (GB-IBEM)          199 6.2.1 Computational examples    202 6.3 Application to Ground penetrating Radar (GPR)           205 6. 3.1    Transient Field due to Dipole Radiation Reflected from the Air-Earth Interface      207 6. 3.2 Transient Field Transmitted into a Lossy Ground due to Dipole Radiation     214 6.4 Simplified Calculation of Specific Absorption (SA) in Human Tissue      221 6.4.1 Calculation of specific absorption (SA)          222 6.4.2 Numerical results   223 6.5 Time Domain Energy Measures           229 6.6 Time Domain Analysis of Multiple Straight Wires above a Half-space by means of Various Time Domain Measures 234 6.6.1 Theoretical background      235 6.6.2 Numerical results   237 7. Bioelectromagnetics – Exposure of Humans in GHz Frequency Range   280 7.1 Assessment of Sab in a planar single layer tissue         280 7.1.1 Analysis of Dipole Antenna in Front of Planar Interface         282 7.1.2. Calculation of Absorbed Power Density      285 7.1.3 Computational Examples    285 7.2. Assessment of Transmitted Power Density in a Single Layer Tissue     289 7.2.1 Formulation            290 7.2.2 Results for current distribution        294 8. Multiphysics Phenomena         330 8.1. Electromagnetic-Thermal modeling of the Human Exposure to HF Radiation  330 8.1.1. Electromagnetic Dosimetry             330 8.1.2. Thermal Dosimetry             332 8.1.3. Computational examples   336 8.2. Magnetohydrodynamics (MHD) Models for Plasma Confinement        337 8.2.1. Grad Shafranov Equation  338 8.2.2. Transport Phenomena Modeling    349 8.3. Schrodinger Equation            358 8.3.1 Derivation of Schrördinger equation             359 8.3.2 Analytical solution of Schrördinger equation             360 8.3.3 FDM solution of Schrördinger equation        361 8.3.4 FEM solution of Schrördinger equation        362 8.3.5 Neural netwok approach to the solution of Schrördinger equation   364 9.            Methods for stochastic analysis  372 9.1. Uncertainty quantification framework            373 9.1.1.     Uncertainty quantification (UQ) of model input parameters          373 9.1.2.     Uncertainty propagation (UP)     374 9.1.3.     Monte Carlo method      375 9.2. Stochastic collocation method           376 9.2.1. Computation of stochastic moments           377 9.2.2. Interpolation approaches  378 9.2.3. Collocation points selection            379 9.2.4. Multidimensional stochastic problems        379 9.3. Sensitivity analysis   383 9.3.1. “One-at-a-time” (OAT) approach   384 9.3.2. ANalysis Of VAriance (ANOVA) based method          384 10.         Stochastic-deterministic electromagnetic dosimetry         389 10.1. Internal stochastic dosimetry for a simple body model exposed to low frequency field               390 10.2. Internal stochastic dosimetry for a simple body model exposed to electromagnetic pulse               393 10.3. Internal stochastic dosimetry for a realistic three-compartment human head exposed to high frequency plane wave          396 10.4. Incident field stochastic dosimetry for base station antenna radiation           401 11.         Stochastic-deterministic thermal dosimetry          411 11.1. Stochastic sensitivity analysis of bioheat transfer equation  412 11.2. Stochastic thermal dosimetry for homogeneous human brain           414 11.3. Stochastic thermal dosimetry for three-compartment human head 421 11.4. Stochastic thermal dosimetry below 6 GHz for 5G mobile communication systems   424  12.        Stochastic-deterministic modelling in biomedical applications of electromagnetic fields430 12.1. Transcranial Magnetic Stimulation  430 12.2. Transcranial Electric Stimulation      435 12.2.1.  Cylinder representation of human head  436 12.2.2.  A 3-compartment human head model     438 12.2.3.  A 9-compartment human head model     441 12.3. Neuron’s action potential dynamics              447 12.4. Radiation efficiency of implantable antennas            453 13.         Stochastic-deterministic modelling of wire configurations in frequency and time domain 1 13.1.      Ground penetrating radar            1 13.1.1.  The transient current induced along the GPR antenna      2 13.1.2.  The transient field transmitted into a lossy soil    5 13.2.      Grounding systems          10 13.2.1.  Test case #1: soil and lighting pulse parameters are random variables       12 13.2.2.  Test case #2: soil and electrode parameters are random variables              13 13.2.3.  Test case #3: soil, electrode and lighting pulse parameters are random variables  14 13.3.      Air-traffic control systems            17 13.3.1.  Runway covered with snow         19 13.3.2.  Runway covered with vegetation              21 14.         A note on stochastic modelling of plasma physics phenomena      488 14.1.      Tokamak current diffusion equation         488    

About the Author :
Dragan Poljak, Ph.D, is Professor in the Department of Electronics and Computing Technology, University of Split, Croatia. He is a Senior Member of the IEEE and author of three books and more than one hunderd and fifty articles on subjects related to computational electromagnetics. Anna Šušnjara, Ph.D, is a Postdoctoral Researcher in the Department of Electronics and Computing Technology, University of Split, Croatia. She is a member of the IEEE and has authored or co-authored more than 40 journal and conference papers on subjects related to computational electromagnetics.


Best Sellers


Product Details
  • ISBN-13: 9781119989257
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Standards Information Network
  • Language: English
  • Series Title: IEEE Press Series on Electromagnetic Wave Theory
  • ISBN-10: 1119989256
  • Publisher Date: 20 Nov 2023
  • Binding: Digital (delivered electronically)
  • No of Pages: 576
  • Sub Title: Integral and Differential Equation Approaches


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Deterministic and Stochastic Modeling in Computational Electromagnetics: Integral and Differential Equation Approaches(IEEE Press Series on Electromagnetic Wave Theory)
John Wiley & Sons Inc -
Deterministic and Stochastic Modeling in Computational Electromagnetics: Integral and Differential Equation Approaches(IEEE Press Series on Electromagnetic Wave Theory)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Deterministic and Stochastic Modeling in Computational Electromagnetics: Integral and Differential Equation Approaches(IEEE Press Series on Electromagnetic Wave Theory)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!