Generative AI with Python and TensorFlow 2 - Bookswagon UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Generative AI with Python and TensorFlow 2: Create images, text, and music with VAEs, GANs, LSTMs, Transformer models
Generative AI with Python and TensorFlow 2: Create images, text, and music with VAEs, GANs, LSTMs, Transformer models

Generative AI with Python and TensorFlow 2: Create images, text, and music with VAEs, GANs, LSTMs, Transformer models


     0     
5
4
3
2
1



Available


X
About the Book

This edition is heavily outdated and we have a new edition with PyTorch examples published! Key Features Code examples are in TensorFlow 2, which make it easy for PyTorch users to follow along Look inside the most famous deep generative models, from GPT to MuseGAN Learn to build and adapt your own models in TensorFlow 2.x Explore exciting, cutting-edge use cases for deep generative AI Book DescriptionMachines are excelling at creative human skills such as painting, writing, and composing music. Could you be more creative than generative AI? In this book, you’ll explore the evolution of generative models, from restricted Boltzmann machines and deep belief networks to VAEs and GANs. You’ll learn how to implement models yourself in TensorFlow and get to grips with the latest research on deep neural networks. There’s been an explosion in potential use cases for generative models. You’ll look at Open AI’s news generator, deepfakes, and training deep learning agents to navigate a simulated environment. Recreate the code that’s under the hood and uncover surprising links between text, image, and music generation.What you will learn Export the code from GitHub into Google Colab to see how everything works for yourself Compose music using LSTM models, simple GANs, and MuseGAN Create deepfakes using facial landmarks, autoencoders, and pix2pix GAN Learn how attention and transformers have changed NLP Build several text generation pipelines based on LSTMs, BERT, and GPT-2 Implement paired and unpaired style transfer with networks like StyleGAN Discover emerging applications of generative AI like folding proteins and creating videos from images Who this book is forThis is a book for Python programmers who are keen to create and have some fun using generative models. To make the most out of this book, you should have a basic familiarity with math and statistics for machine learning.

Table of Contents:
Table of Contents An Introduction to Generative AI: "Drawing" Data from Models Setting Up a TensorFlow Lab Building Blocks of Deep Neural Networks Teaching Networks to Generate Digits Painting Pictures with Neural Networks Using VAEs Image Generation with GANs Style Transfer with GANs Deepfakes with GANs The Rise of Methods for Text Generation NLP 2.0: Using Transformers to Generate Text Composing Music with Generative Models Play Video Games with Generative AI: GAIL Emerging Applications in Generative AI

About the Author :
Joseph Babcock has spent over a decade working with big data and AI in the e-commerce, digital streaming, and quantitative finance domains. Throughout his career, he has worked on recommender systems, petabyte-scale cloud data pipelines, A/B testing, causal inference, and time series analysis. He completed his PhD studies at Johns Hopkins University, applying machine learning to drug discovery and genomics. Raghav Bali is a Staff Data Scientist at Delivery Hero, a leading food delivery service headquartered in Berlin, Germany. With 12+ years of expertise, he specializes in research and development of enterprise-level solutions leveraging Machine Learning, Deep Learning, Natural Language Processing, and Recommendation Engines for practical business applications. Besides his professional endeavors, Raghav is an esteemed mentor and an accomplished public speaker. He has contributed to multiple peer-reviewed papers and authored multiple well received books. Additionally, he holds co-inventor credits on multiple patents in healthcare, machine learning, deep learning, and natural language processing.


Best Sellers


Product Details
  • ISBN-13: 9781800200883
  • Publisher: Packt Publishing Limited
  • Publisher Imprint: Packt Publishing Limited
  • Height: 235 mm
  • No of Pages: 488
  • Returnable: N
  • Returnable: N
  • Width: 191 mm
  • ISBN-10: 1800200889
  • Publisher Date: 30 Apr 2021
  • Binding: Paperback
  • Language: English
  • No of Pages: 488
  • Returnable: N
  • Sub Title: Create images, text, and music with VAEs, GANs, LSTMs, Transformer models


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Generative AI with Python and TensorFlow 2: Create images, text, and music with VAEs, GANs, LSTMs, Transformer models
Packt Publishing Limited -
Generative AI with Python and TensorFlow 2: Create images, text, and music with VAEs, GANs, LSTMs, Transformer models
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Generative AI with Python and TensorFlow 2: Create images, text, and music with VAEs, GANs, LSTMs, Transformer models

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!