Joint Communications and Sensing by Kai Wu - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Joint Communications and Sensing: From Fundamentals to Advanced Techniques

Joint Communications and Sensing: From Fundamentals to Advanced Techniques


     0     
5
4
3
2
1



International Edition


X
About the Book

JOINT COMMUNICATIONS AND SENSING Authoritative resource systematically introducing JCAS technologies and providing valuable information and knowledge to researchers and engineers Based on over six years of dedicated research on joint communications and sensing (JCAS) by the authors, their collaborators, and students, Joint Communications and Sensing is the first book to comprehensively cover the subject of JCAS, which is expected to deliver huge cost and energy savings, and therefore has become a hallmark of future 6G and next generation radar technologies. The book has three parts. Part I presents the basic JCAS concepts and applications and the basic signal processing algorithms to support JCAS. Part II covers communications-centric JCAS designs that describe how sensing can be integrated into communications networks such as 5G and 6G. Part III presents ways to integrate communications in various radar sensing technologies and platforms. Specific sample topics covered in Joint Communications and Sensing include: Three categories of JCAS systems, potential sensing applications of JCAS, signal processing fundamentals, and channel models for communications and radar Frameworks for perceptive mobile networks (PMNs), system modifications to enable PMN sensing, and PMN system issues Orthogonal time-frequency space waveform-based JCAS for IoT, including signal models, echo pre-processing, and target parameter estimation Joint Communications and Sensing provides valuable information and knowledge to researchers and engineers in the communications and radar sensing communities and industries, enabling them to upskill and prepare for JCAS technology research and development. The text is of particular interest to engineers in the wireless communications industry who are pursuing new capabilities in 6G.

Table of Contents:
Acknowledgments xiii Preface xv Acronyms xvii Part I Fundamentals of Joint Communications and Sensing (JCAS) 1 1 Introduction to Joint Communications and Sensing (JCAS) 3 1.1 Background 3 1.2 Three Categories of JCAS Systems 5 1.2.1 Major Differences Between Communications and Sensing 7 1.2.2 Communications-Centric Design 12 1.2.3 Radar-Centric Design 15 1.2.4 Joint Design without an Underlying System 17 1.2.5 Summary of Key Research Problems 18 1.3 Potential Sensing Applications of JCAS 18 1.4 Book Organization 22 References 24 2 Signal Processing Fundamentals for JCAS 31 2.1 Channel Model for Communications and Radar 31 2.2 Basic Communication Signals and Systems 33 2.2.1 Single-Carrier MIMO 33 2.2.2 MIMO-OFDM 34 2.2.3 Transmitter and Receiver Signal Processing in Communications 34 2.3 MIMO Radar Signals and Systems 36 2.3.1 Single-Carrier MIMO Radar 36 2.3.2 MIMO-OFDM Radar 37 2.3.3 FH-MIMO Radar 38 2.4 Basic Signal Processing for Radar Sensing 40 2.4.1 Matched Filtering 40 2.4.2 Moving Target Detection (MTD) 41 2.4.3 Spatial-Domain Processing 42 2.4.4 Target Detection 43 2.4.5 Spatial Refinement 44 2.5 Signal Processing Basics for Communication-Centric JCAS 44 2.5.1 802.11ad JCAS Systems 44 2.5.2 Mobile Network with JCAS Capabilities 46 2.5.3 Sensing Parameter Estimation 46 2.5.3.1 Direct and Indirect Sensing 47 2.5.3.2 Sensing Algorithms 49 2.6 Signal Processing Basics for DFRC 50 2.6.1 Embedding Information in RadarWaveform 50 2.6.2 Signal Reception and Processing for Communications 52 2.6.2.1 Demodulation 53 2.6.2.2 Channel Estimation 54 2.6.3 Codebook Design 54 2.7 Conclusions 55 References 55 3 Efficient Parameter Estimation 59 3.1 Q-Shifted Estimator (QSE) 60 3.2 Refined QSE (QSEr) 62 3.2.1 Impact ofq 62 3.2.2 Refined Optimalq 66 3.2.3 Numerical Illustration of QSEr 67 3.3 Padé approximation-Enabled Estimator 70 3.3.1 Core Updating Function 71 3.3.2 Initialization and Overall Estimation Procedure 74 3.3.3 Numerical Illustrations 76 3.4 Conclusions 80 References 80 Part II Communication-Centric JCAS 83 4 Perceptive Mobile Network (PMN) 85 4.1 Framework for PMN 85 4.1.1 System Platform and Infrastructure 86 Trim Size: 6in x 9in Single Column Wu982913 ftoc.tex V1 - 09/06/2022 5:13pm Page vii [1] [1] [1] [1] Contents vii 4.1.1.1 CRAN 87 4.1.1.2 Standalone BS 87 4.1.2 Three Types of Sensing Operations 88 4.1.2.1 Downlink Active Sensing 88 4.1.2.2 Downlink Passive Sensing 88 4.1.2.3 Uplink Sensing 89 4.1.2.4 Comparison 89 4.1.3 Signals Usable from 5G NR for Radio Sensing 90 4.1.3.1 Reference Signals Used for Channel Estimation 90 4.1.3.2 Nonchannel Estimation Signals 92 4.1.3.3 Data Payload Signals 92 4.2 System Modifications to Enable Sensing 92 4.2.1 Dedicated Transmitter for Uplink Sensing 93 4.2.2 Dedicated Receiver for Downlink (and Uplink) Sensing 94 4.2.3 Full-Duplex Radios for Downlink Sensing 94 4.2.4 Base Stations with Widely Separated Transmitting and Receiving Antennas 96 4.3 System Issues 98 4.3.1 Performance Bounds 98 4.3.2 Waveform Optimization 100 4.3.2.1 Spatial Optimization 102 4.3.2.2 Optimization in Time and Frequency Domains 105 4.3.2.3 Optimization with Next-Generation Signaling Formats 106 4.3.3 Antenna Array Design 106 4.3.3.1 Virtual MIMO and Antenna Grouping 107 4.3.3.2 Sparse Array Design 108 4.3.3.3 Spatial Modulation 109 4.3.3.4 Reconfigurable Intelligent Surface-Assisted JCAS 109 4.3.4 Clutter Suppression Techniques 110 4.3.4.1 Recursive Moving Averaging (RMA) 112 4.3.4.2 Gaussian Mixture Model (GMM) 113 4.3.5 Sensing Parameter Estimation 114 4.3.5.1 Periodogram such as 2D DFT 115 4.3.5.2 Subspace-Based Spectrum Analysis Techniques 115 4.3.5.3 On-Grid Compressive Sensing Algorithms 117 4.3.6 Resolution of Sensing Ambiguity 119 4.3.7 Pattern Analysis 122 4.3.8 Networked Sensing under Cellular Topology 123 4.3.8.1 Fundamental Theories and Performance Bounds for “Cellular Sensing Networks” 123 4.3.8.2 Distributed Sensing with Node Grouping and Cooperation 124 4.3.9 Sensing-Assisted Communications 124 4.3.9.1 Sensing-Assisted Beamforming 124 4.3.9.2 Sensing-Assisted Secure Communications 128 4.4 Conclusions 128 References 128 5 Integrating Low-Complexity and Flexible Sensing into Communication Systems: A Unified Sensing Framework 139 5.1 Problem Statement and Signal Model 139 5.1.1 Signal Model 140 5.1.2 Classical OFDM Sensing (COS) 142 5.1.3 Problem Statement 143 5.1.3.1 CP-limited Sensing Distance 143 5.1.3.2 Communication-limited Velocity measurement 143 5.1.3.3 COS adapted for DFT-S-OFDM 144 5.2 A Low-Complexity Sensing Framework 144 5.3 Performance Analysis 150 5.3.1 Preliminary Results 150 5.3.2 Analyzing Signal Components in Two RDMs 151 5.3.3 Comparison and Insights 154 5.3.4 Criteria for Setting Key Sensing Parameters 157 5.4 Simulation Results 158 5.4.1 Illustrating SINRs in RDMs 159 5.4.2 Illustration of Target Detection 162 5.5 Conclusions 166 References 167 6 Sensing Framework Optimization 169 6.1 Echo Preprocessing 169 6.1.1 Reshaping 170 6.1.2 Virtual Cyclic Prefix (VCP) 171 6.1.3 Removing Communication Information 174 6.2 Target Parameter Estimation 177 6.2.1 Parameter Estimation Method 177 6.2.2 Computational Complexity 181 6.3 Optimizing Parameters of Sensing Methods 182 6.3.1 Preliminary Results 183 6.3.2 Maximizing SINR for Parameter Estimation 184 6.4 Simulation Results 186 6.4.1 Comparison with Benchmark Method 186 Trim Size: 6in x 9in Single Column Wu982913 ftoc.tex V1 - 09/06/2022 5:13pm Page ix [1] [1] [1] [1] Contents ix 6.4.2 Wide Applicability 189 6.5 Conclusions 192 References 193 Part III Radar-Centric Joint Communications and Sensing 195 7 FH-MIMO Dual-Function Radar-Based Communications: Single-Antenna Receiver 197 7.1 Problem Statement 198 7.2 Waveform Design for FH-MIMO DFRC 199 7.2.1 FH-MIMO RadarWaveform 200 7.2.2 Overall Channel Estimation Scheme 202 7.2.2.1 Estimate Timing Offset 203 7.2.2.2 Estimate Channel Parameters 203 7.3 Estimating Timing Offset 203 7.3.1 Two Estimation Methods 204 7.3.2 Performance Analysis and Comparison of the Estimators 205 7.3.3 Design of a Suboptimal Hopping Frequency Sequence 208 7.4 Estimating Channel Response 209 7.4.1 Estimation Method 209 7.4.2 Complexity Analysis 210 7.5 Using Estimations in Data Communications 211 7.6 Extensions to Multipath Cases 212 7.7 Simulation Results 214 7.8 Conclusions 219 References 219 8 Frequency-Hopping MIMO Radar-Based Communications with Multiantenna Receiver 221 8.1 Signal Model 221 8.2 The DFRC Signal Mode 223 8.3 A Multiantenna Receiving Scheme 226 8.3.1 Estimating Channel Response 226 8.3.2 Estimating Timing Offset 227 8.3.2.1 Estimating L𝜂 228 8.3.2.2 Removing Estimation Ambiguity 229 8.3.3 Information Demodulation 230 8.3.3.1 Estimating khm 230 8.3.3.2 FHCS Demodulation 232 8.3.3.3 PSK Demodulation 232 8.4 Performance Analysis 232 8.4.1 Performance of Channel Coefficient Estimation 232 8.4.2 Performance of Timing Offset Estimation 233 8.4.3 Communication Performance 234 8.4.3.1 Achievable Rate 234 8.4.3.2 SER of PSK-Based FH-MIMO DFRC 234 8.5 Simulations 235 8.6 Conclusions 240 References 240 9 Integrating Secure Communications into Frequency Hopping MIMO Radar with Improved Data Rates 243 9.1 Signal Models and Overall Design 243 9.1.1 Signal Model of Bob 244 9.1.2 Signal Model of Eve 245 9.1.3 Overall Description 246 9.1.4 Maximum Achievable Rate (MAR) 247 9.2 Elementwise Phase Compensation 249 9.2.1 AoD-Dependence Issue of Hopping Frequency Permutation Selection (HFPS) Demodulation 249 9.2.2 Elementwise phase compensation and HFPS Demodulation at Bob 250 9.2.3 Enhancing Physical-Layer Security by Elementwise Phase Compensation 252 9.3 Random Sign Reversal 253 9.3.1 Random Sign Reversal and Maximum Likelihood (ML) Decoding 253 9.3.2 Detecting Random Sign Reversal at Bob 254 9.3.3 Random Sign Reversal Impact Analysis 255 9.3.4 Impact of Presented Design on Radar Performance 258 9.3.4.1 Impact of HFCS on R(𝜏) 258 9.3.4.2 Impact of HFPS on R(𝜏) 259 9.3.4.3 Impact of Elementwise Phase Compensation and Random Sign Reversal on R(𝜏) 259 9.3.4.4 Limitations of Presented Design for Radar Applications 260 9.3.5 Extension to Multipath and Multiuser Scenarios 260 9.3.5.1 Multipath Scenario 260 9.3.5.2 Multiuser Scenario 261 9.4 Simulation Results 261 9.5 Conclusions 267 References 267 Trim Size: 6in x 9in Single Column Wu982913 ftoc.tex V1 - 09/06/2022 5:13pm Page xi [1] [1] [1] [1] Contents xi A Proofs, Analyses, and Derivations 271 A.1 Proof of Lemma 5.1 271 A.2 Proof of Lemma 5.2 271 A.3 Proof of Lemma 5.3 272 A.4 Proof of Proposition 5.1 273 A.5 Proof of Proposition 5.2 274 A.6 Proof of Proposition 6.1 275 A.7 Deriving the Powers of the Four Terms of X̃ n[l] Given in (6.33) 277 A.8 Proof of Proposition 6.2 280 A.9 Proof of Proposition 6.3 281 A.10 Deriving (9.31) 282 References 283 Index 285

About the Author :
Kai Wu, PhD, is a Research Fellow at the Global Big Data Technologies Centre, University of Technology Sydney (UTS), Australia. J. Andrew Zhang, PhD, is an Associate Professor at the School of Electrical and Data Engineering, University of Technology Sydney, Australia. Y. Jay Guo, PhD, is the Director of Global Big Data Technologies Centre and ­Distinguished Professor at University of Technology Sydney, Australia. He co-edited the Wiley-IEEE Press title Antenna and Array Technologies for Future Wireless Ecosystems (2022) and co-authored the Wiley-IEEE Press title Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications (2021).


Best Sellers


Product Details
  • ISBN-13: 9781119982913
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-IEEE Press
  • Language: English
  • Returnable: N
  • Sub Title: From Fundamentals to Advanced Techniques
  • ISBN-10: 111998291X
  • Publisher Date: 16 Nov 2022
  • Binding: Hardback
  • No of Pages: 320
  • Returnable: N
  • Weight: 668 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Joint Communications and Sensing: From Fundamentals to Advanced Techniques
John Wiley & Sons Inc -
Joint Communications and Sensing: From Fundamentals to Advanced Techniques
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Joint Communications and Sensing: From Fundamentals to Advanced Techniques

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!