Biomedical Imaging
Home > Science, Technology & Agriculture > Energy technology and engineering > Electrical engineering > Biomedical Imaging: Principles and Applications
Biomedical Imaging: Principles and Applications

Biomedical Imaging: Principles and Applications


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Table of Contents:
Preface xv Contributors xvii 1 Evaluation of Spectroscopic Images 1 Patrick W.T. Krooshof, Geert J. Postma, Willem J. Melssen, and Lutgarde M.C. Buydens 1.1 Introduction 1 1.2 Data Analysis 2 1.2.1 Similarity Measures 3 1.2.2 Unsupervised Pattern Recognition 4 1.2.2.1 Partitional Clustering 4 1.2.2.2 Hierarchical Clustering 6 1.2.2.3 Density-Based Clustering 7 1.2.3 Supervised Pattern Recognition 9 1.2.3.1 Probability of Class Membership 9 1.3 Applications 11 1.3.1 Brain Tumor Diagnosis 11 1.3.2 MRS Data Processing 12 1.3.2.1 Removing MRS Artifacts 12 1.3.2.2 MRS Data Quantitation 13 1.3.3 MRI Data Processing 14 1.3.3.1 Image Registration 15 1.3.4 Combining MRI and MRS Data 16 1.3.4.1 Reference Data Set 16 1.3.5 Probability of Class Memberships 17 1.3.6 Class Membership of Individual Voxels 18 1.3.7 Classification of Individual Voxels 20 1.3.8 Clustering into Segments 22 1.3.9 Classification of Segments 23 1.3.10 Future Directions 24 References 25 2 Evaluation of Tomographic Data 30 Jorg van den Hoff 2.1 Introduction 30 2.2 Image Reconstruction 33 2.3 Image Data Representation: Pixel Size and Image Resolution 34 2.4 Consequences of Limited Spatial Resolution 39 2.5 Tomographic Data Evaluation: Tasks 46 2.5.1 Software Tools 46 2.5.2 Data Access 47 2.5.3 Image Processing 47 2.5.3.1 Slice Averaging 48 2.5.3.2 Image Smoothing 48 2.5.3.3 Coregistration and Resampling 51 2.5.4 Visualization 52 2.5.4.1 Maximum Intensity Projection (MIP) 52 2.5.4.2 Volume Rendering and Segmentation 54 2.5.5 Dynamic Tomographic Data 56 2.5.5.1 Parametric Imaging 57 2.5.5.2 Compartment Modeling of Tomographic Data 57 2.6 Summary 61 References 61 3 X-Ray Imaging 63 Volker Hietschold 3.1 Basics 63 3.1.1 History 63 3.1.2 Basic Physics 64 3.2 Instrumentation 66 3.2.1 Components 66 3.2.1.1 Beam Generation 66 3.2.1.2 Reduction of Scattered Radiation 67 3.2.1.3 Image Detection 69 3.3 Clinical Applications 76 3.3.1 Diagnostic Devices 76 3.3.1.1 Projection Radiography 76 3.3.1.2 Mammography 78 3.3.1.3 Fluoroscopy 81 3.3.1.4 Angiography 82 3.3.1.5 Portable Devices 84 3.3.2 High Voltage and Image Quality 85 3.3.3 Tomography/Tomosynthesis 87 3.3.4 Dual Energy Imaging 87 3.3.5 Computer Applications 88 3.3.6 Interventional Radiology 92 3.4 Radiation Exposure to Patients and Employees 92 References 95 4 Computed Tomography 97 Stefan Ulzheimer and Thomas Flohr 4.1 Basics 97 4.1.1 History 97 4.1.2 Basic Physics and Image Reconstruction 100 4.2 Instrumentation 102 4.2.1 Gantry 102 4.2.2 X-ray Tube and Generator 103 4.2.3 MDCT Detector Design and Slice Collimation 103 4.2.4 Data Rates and Data Transmission 107 4.2.5 Dual Source CT 107 4.3 Measurement Techniques 109 4.3.1 MDCT Sequential (Axial) Scanning 109 4.3.2 MDCT Spiral (Helical) Scanning 109 4.3.2.1 Pitch 110 4.3.2.2 Collimated and Effective Slice Width 110 4.3.2.3 Multislice Linear Interpolation and z-Filtering 111 4.3.2.4 Three-Dimensional Backprojection and Adaptive Multiple Plane Reconstruction (AMPR) 114 4.3.2.5 Double z-Sampling 114 4.3.3 ECG-Triggered and ECG-Gated Cardiovascular CT 115 4.3.3.1 Principles of ECG-Triggering and ECG-Gating 115 4.3.3.2 ECG-Gated Single-Segment and Multisegment Reconstruction 118 4.4 Applications 119 4.4.1 Clinical Applications of Computed Tomography 119 4.4.2 Radiation Dose in Typical Clinical Applications and Methods for Dose Reduction 122 4.5 Outlook 125 References 127 5 Magnetic Resonance Technology 131 Boguslaw Tomanek and Jonathan C. Sharp 5.1 Introduction 131 5.2 Magnetic Nuclei Spin in a Magnetic Field 133 5.2.1 A Pulsed rf Field Resonates with Magnetized Nuclei 135 5.2.2 The MR Signal 137 5.2.3 Spin Interactions Have Characteristic Relaxation Times 138 5.3 Image Creation 139 5.3.1 Slice Selection 139 5.3.2 The Signal Comes Back—The Spin Echo 142 5.3.3 Gradient Echo 143 5.4 Image Reconstruction 145 5.4.1 Sequence Parameters 146 5.5 Image Resolution 148 5.6 Noise in the Image—SNR 149 5.7 Image Weighting and Pulse Sequence Parameters TE and TR 150 5.7.1 T2-Weighted Imaging 150 5.7.2 T∗2 -Weighted Imaging 151 5.7.3 Proton-Density-Weighted Imaging 152 5.7.4 T1-Weighted Imaging 152 5.8 A Menagerie of Pulse Sequences 152 5.8.1 EPI 154 5.8.2 FSE 154 5.8.3 Inversion-Recovery 155 5.8.4 DWI 156 5.8.5 MRA 158 5.8.6 Perfusion 159 5.9 Enhanced Diagnostic Capabilities of MRI—Contrast Agents 159 5.10 Molecular MRI 159 5.11 Reading the Mind—Functional MRI 160 5.12 Magnetic Resonance Spectroscopy 161 5.12.1 Single Voxel Spectroscopy 163 5.12.2 Spectroscopic Imaging 163 5.13 MR Hardware 164 5.13.1 Magnets 164 5.13.2 Shimming 167 5.13.3 Rf Shielding 168 5.13.4 Gradient System 168 5.13.5 MR Electronics—The Console 169 5.13.6 Rf Coils 170 5.14 MRI Safety 171 5.14.1 Magnet Safety 171 5.14.2 Gradient Safety 173 5.15 Imaging Artefacts in MRI 173 5.15.1 High Field Effects 174 5.16 Advanced MR Technology and Its Possible Future 175 References 175 6 Toward A 3D View of Cellular Architecture: Correlative Light Microscopy and Electron Tomography 180 Jack A. Valentijn, Linda F. van Driel, Karen A. Jansen, Karine M. Valentijn, and Abraham J. Koster 6.1 Introduction 180 6.2 Historical Perspective 181 6.3 Stains for CLEM 182 6.4 Probes for CLEM 183 6.4.1 Probes to Detect Exogenous Proteins 183 6.4.1.1 Green Fluorescent Protein 183 6.4.1.2 Tetracysteine Tags 186 6.4.1.3 Theme Variations: Split GFP and GFP-4C 187 6.4.2 Probes to Detect Endogenous Proteins 188 6.4.2.1 Antifluorochrome Antibodies 189 6.4.2.2 Combined Fluorescent and Gold Probes 189 6.4.2.3 Quantum Dots 190 6.4.2.4 Dendrimers 191 6.4.3 Probes to Detect Nonproteinaceous Molecules 192 6.5 CLEM Applications 193 6.5.1 Diagnostic Electron Microscopy 193 6.5.2 Ultrastructural Neuroanatomy 194 6.5.3 Live-Cell Imaging 196 6.5.4 Electron Tomography 197 6.5.5 Cryoelectron Microscopy 198 6.5.6 Immuno Electron Microscopy 201 6.6 Future Perspective 202 References 205 7 Tracer Imaging 215 Rainer Hinz 7.1 Introduction 215 7.2 Instrumentation 216 7.2.1 Radioisotope Production 216 7.2.2 Radiochemistry and Radiopharmacy 219 7.2.3 Imaging Devices 220 7.2.4 Peripheral Detectors and Bioanalysis 225 7.3 Measurement Techniques 228 7.3.1 Tomographic Image Reconstruction 228 7.3.2 Quantification Methods 229 7.3.2.1 The Flow Model 230 7.3.2.2 The Irreversible Model for Deoxyglucose 230 7.3.2.3 The Neuroreceptor Binding Model 233 7.4 Applications 234 7.4.1 Neuroscience 234 7.4.1.1 Cerebral Blood Flow 234 7.4.1.2 Neurotransmitter Systems 235 7.4.1.3 Metabolic and Other Processes 238 7.4.2 Cardiology 240 7.4.3 Oncology 240 7.4.3.1 Angiogenesis 240 7.4.3.2 Proliferation 241 7.4.3.3 Hypoxia 241 7.4.3.4 Apoptosis 242 7.4.3.5 Receptor Imaging 242 7.4.3.6 Imaging Gene Therapy 243 7.4.4 Molecular Imaging for Research in Drug Development 243 7.4.5 Small Animal Imaging 244 References 244 8 Fluorescence Imaging 248 Nikolaos C. Deliolanis, Christian P. Schultz, and Vasilis Ntziachristos 8.1 Introduction 248 8.2 Contrast Mechanisms 249 8.2.1 Endogenous Contrast 249 8.2.2 Exogenous Contrast 251 8.3 Direct Methods: Fluorescent Probes 251 8.4 Indirect Methods: Fluorescent Proteins 252 8.5 Microscopy 253 8.5.1 Optical Microscopy 253 8.5.2 Fluorescence Microscopy 254 8.6 Macroscopic Imaging/Tomography 260 8.7 Planar Imaging 260 8.8 Tomography 262 8.8.1 Diffuse Optical Tomography 266 8.8.2 Fluorescence Tomography 266 8.9 Conclusion 267 References 268 9 Infrared and Raman Spectroscopic Imaging 275 Gerald Steiner 9.1 Introduction 275 9.2 Instrumentation 278 9.2.1 Infrared Imaging 278 9.2.2 Near-Infrared Imaging 281 9.3 Raman Imaging 282 9.4 Sampling Techniques 283 9.5 Data Analysis and Image Evaluation 285 9.5.1 Data Preprocessing 287 9.5.2 Feature Selection 287 9.5.3 Spectral Classification 288 9.5.4 Image Processing Including Pattern Recognition 292 9.6 Applications 292 9.6.1 Single Cells 292 9.6.2 Tissue Sections 292 9.6.2.1 Brain Tissue 294 9.6.2.2 Skin Tissue 295 9.6.2.3 Breast Tissue 298 9.6.2.4 Bone Tissue 299 9.6.3 Diagnosis of Hemodynamics 300 References 301 10 Coherent Anti-Stokes Raman Scattering Microscopy 304 Annika Enejder, Christoph Heinrich, Christian Brackmann, Stefan Bernet, and Monika Ritsch-Marte 10.1 Basics 304 10.1.1 Introduction 304 10.2 Theory 306 10.3 CARS Microscopy in Practice 309 10.4 Instrumentation 310 10.5 Laser Sources 311 10.6 Data Acquisition 314 10.7 Measurement Techniques 316 10.7.1 Excitation Geometry 316 10.7.2 Detection Geometry 318 10.7.3 Time-Resolved Detection 319 10.7.4 Phase-Sensitive Detection 319 10.7.5 Amplitude-Modulated Detection 320 10.8 Applications 320 10.8.1 Imaging of Biological Membranes 321 10.8.2 Studies of Functional Nutrients 321 10.8.3 Lipid Dynamics and Metabolism in Living Cells and Organisms 322 10.8.4 Cell Hydrodynamics 324 10.8.5 Tumor Cells 325 10.8.6 Tissue Imaging 325 10.8.7 Imaging of Proteins and DNA 326 10.9 Conclusions 326 References 327 11 Biomedical Sonography 331 Georg Schmitz 11.1 Basic Principles 331 11.1.1 Introduction 331 11.1.2 Ultrasonic Wave Propagation in Biological Tissues 332 11.1.3 Diffraction and Radiation of Sound 333 11.1.4 Acoustic Scattering 337 11.1.5 Acoustic Losses 338 11.1.6 Doppler Effect 339 11.1.7 Nonlinear Wave Propagation 339 11.1.8 Biological Effects of Ultrasound 340 11.1.8.1 Thermal Effects 340 11.1.8.2 Cavitation Effects 340 11.2 Instrumentation of Real-Time Ultrasound Imaging 341 11.2.1 Pulse-Echo Imaging Principle 341 11.2.2 Ultrasonic Transducers 342 11.2.3 Beamforming 344 11.2.3.1 Beamforming Electronics 344 11.2.3.2 Array Beamforming 345 11.3 Measurement Techniques of Real-Time Ultrasound Imaging 347 11.3.1 Doppler Measurement Techniques 347 11.3.1.1 Continuous Wave Doppler 347 11.3.1.2 Pulsed Wave Doppler 349 11.3.1.3 Color Doppler Imaging and Power Doppler Imaging 351 11.3.2 Ultrasound Contrast Agents and Nonlinear Imaging 353 11.3.2.1 Ultrasound Contrast Media 353 11.3.2.2 Harmonic Imaging Techniques 356 11.3.2.3 Perfusion Imaging Techniques 357 11.3.2.4 Targeted Imaging 358 11.4 Application Examples of Biomedical Sonography 359 11.4.1 B-Mode, M-Mode, and 3D Imaging 359 11.4.2 Flow and Perfusion Imaging 362 References 365 12 Acoustic Microscopy for Biomedical Applications 368 Jurgen Bereiter-Hahn 12.1 Sound Waves and Basics of Acoustic Microscopy 368 12.1.1 Propagation of Sound Waves 369 12.1.2 Main Applications of Acoustic Microscopy 371 12.1.3 Parameters to Be Determined and General Introduction into Microscopy with Ultrasound 371 12.2 Types of Acoustic Microscopy 372 12.2.1 Scanning Laser Acoustic Microscope (LSAM) 373 12.2.2 Pulse-Echo Mode: Reflection-Based Acoustic Microscopy 373 12.2.2.1 Reflected Amplitude Measurements 379 12.2.2.2 V(z) Imaging 380 12.2.2.3 V(f) Imaging 382 12.2.2.4 Interference-Fringe-Based Image Analysis 383 12.2.2.5 Determination of Phase and the Complex Amplitude 386 12.2.2.6 Combining V (f) with Reflected Amplitude and Phase Imaging 386 12.2.2.7 Time-Resolved SAM and Full Signal Analysis 388 12.3 Biomedical Applications of Acoustic Microscopy 391 12.3.1 Influence of Fixation on Acoustic Parameters of Cells and Tissues 391 12.3.2 Acoustic Microscopy of Cells in Culture 392 12.3.3 Technical Requirements 393 12.3.3.1 Mechanical Stability 393 12.3.3.2 Frequency 393 12.3.3.3 Coupling Fluid 393 12.3.3.4 Time of Image Acquisition 394 12.3.4 What Is Revealed by SAM: Interpretation of SAM Images 394 12.3.4.1 Sound Velocity, Elasticity, and the Cytoskeleton 395 12.3.4.2 Attenuation 400 12.3.4.3 Viewing Subcellular Structures 401 12.3.5 Conclusions 401 12.4 Examples of Tissue Investigations using SAM 403 12.4.1 Hard Tissues 404 12.4.2 Cardiovascular Tissues 405 12.4.3 Other Soft Tissues 406 References 406

About the Author :
REINER SALZER, PHD, is a professor at the Institute for Analytical Chemistry at Technische Universität in Dresden, Germany.

Review :
“This would be highly beneficial to scientists and engineers seeking careers in biomedical imaging.”  (Journal of Biomedical Optics, 1 December 2012)  “The text is expertly integrated with high-quality figures and includes an index. This book is suitable for researchers and engineers in a variety of disciplines. I highly recommend it as a comprehensive introduction to nanofabrication techniques.”  (Optics & Photonics News, 1 October 2012)


Best Sellers


Product Details
  • ISBN-13: 9781118271926
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Language: English
  • Sub Title: Principles and Applications
  • ISBN-10: 1118271920
  • Publisher Date: 11 Apr 2012
  • Binding: Digital (delivered electronically)
  • No of Pages: 448


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Biomedical Imaging: Principles and Applications
John Wiley & Sons Inc -
Biomedical Imaging: Principles and Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Biomedical Imaging: Principles and Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!