Machine Learning Methods in the Environmental Sciences
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Sciences & Environment > The environment > Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels
Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels

Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels


     0     
5
4
3
2
1



International Edition


X
About the Book

Machine learning methods originated from artificial intelligence and are now used in various fields in environmental sciences today. This is the first single-authored textbook providing a unified treatment of machine learning methods and their applications in the environmental sciences. Due to their powerful nonlinear modelling capability, machine learning methods today are used in satellite data processing, general circulation models(GCM), weather and climate prediction, air quality forecasting, analysis and modelling of environmental data, oceanographic and hydrological forecasting, ecological modelling, and monitoring of snow, ice and forests. The book includes end-of-chapter review questions and an appendix listing websites for downloading computer code and data sources. A resources website contains datasets for exercises, and password-protected solutions are available. The book is suitable for first-year graduate students and advanced undergraduates. It is also valuable for researchers and practitioners in environmental sciences interested in applying these new methods to their own work.

Table of Contents:
Preface; 1. Basic notions in classical data analysis; 2. Linear multivariate statistical analysis; 3. Basic time series analysis; 4. Feed-forward neural network models; 5. Nonlinear optimization; 6. Learning and generalization; 7. Kernel methods; 8. Nonlinear classification; 9. Nonlinear regression; 10. Nonlinear principal component analysis; 11. Nonlinear canonical correlation analysis; 12. Applications in environmental sciences; Appendix A. Sources for data and codes; Appendix B. Lagrange multipliers; Bibliography; Index.

About the Author :
William W. Hsieh is a Professor in the Department of Earth and Ocean Sciences and in the Department of Physics and Astronomy, as well as Chair of the Atmospheric Science Programme, at the University of British Columbia. He is internationally known for his pioneering work in developing and applying machine learning methods in environmental sciences. He has published over eighty peer-reviewed journal publications covering areas of climate variability, machine learning, oceanography, atmospheric science and hydrology.

Review :
'… one of the first books describing machine learning techniques in the context of environmental applications … goes a long way in explaining these subjects in a very clear, concise, and understandable way. This is one of the few books where one will find diverse areas of machine learning all within the same cover … aimed at advanced undergraduates and Ph.D. students, as well as researchers and practitioners. No previous knowledge of machine learning concepts is assumed.' Vladimir Krasnopolsky, National Oceanic and Atmospheric Administration (NOAA) and National Weather Service '[This book] aims to, and succeeds in, bridging the gap between AI and what is often referred to as conventional statistics. Add to that the unique perspective that a physicist and an environmental scientist brings to the table, and one has a truly rare book. … a well-balanced mix of theoretical and practical exercises. … Hsieh's book [is] ideal as both a textbook on the topic, and a reference book for the researcher in the field.' Caren Marzban, University of Washington and University of Oklahoma 'This book is unique because it presents machine learning in the context of environmental science applications. I found it to be a valuable tool to bring myself up to date with the historical and recent developments in the subject of machine learning, and I believe the reader will too. The purchase price is modest. I highly recommend that any student or researcher interested in machine learning methods obtain a copy.' William Burrows, Canadian Meteorological and Oceanographic Society Bulletin


Best Sellers


Product Details
  • ISBN-13: 9781108456906
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press
  • Height: 245 mm
  • No of Pages: 363
  • Returnable: N
  • Spine Width: 20 mm
  • Weight: 640 gr
  • ISBN-10: 1108456901
  • Publisher Date: 01 Mar 2018
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Sub Title: Neural Networks and Kernels
  • Width: 170 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels
Cambridge University Press -
Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!