Machine Learning for Microbiome Statistics
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Machine Learning for Microbiome Statistics: (Chapman & Hall/CRC Biostatistics Series)
Machine Learning for Microbiome Statistics: (Chapman & Hall/CRC Biostatistics Series)

Machine Learning for Microbiome Statistics: (Chapman & Hall/CRC Biostatistics Series)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Machine learning fundamentally learns from the past experiences (seen data) to make predictions about future (unseen data). Predictions in nature are often uncertain. Microbiome data have unique characteristics, including high-dimensionality, over-dispersion, sparsity and zero-inflation, and heterogeneity. Thus, machine learning microbiome data for predicting the outcome of phenotypes is even more uncertain than learning those data from other fields. Machine Learning for Microbiome Statistics poses many challenges for evaluating the prediction performance using appropriate metrics and independent data validation. This unique book aims to address the challenges of machine learning statistics, emphasize the importance of performance valuation by appropriate metrics and independent data, and describe several important concepts of machine learning statistics, such as feature engineering and overfitting. It comprehensively reviews commonly used and newly developed machine learning models for microbiome research. Specifically, this book provides the step-by-step procedures to perform machine learning microbiome data, including feature engineering, algorithm selection and optimization, performance evaluation and model testing. It comments the benefits and limitations of using machine learning for microbiome statistics and remarks on the advantages and disadvantages of each machine learning algorithm. It will be an excellent reference book for students and academics in the field. Presents a thorough overview of machine learning algorithms for microbiome statistics. Performs step-by-step procedures to perform machine learning microbiome data, using important supervised learning algorithms, including classical, ensemble learning and tree-based models. Describes important concepts of machine learning, including bias and variance tradeoff, accuracy and precision, overfitting and underfitting, model complexity and interpretability, and feature engineering, Investigates and applies various cross-validation techniques step-by-step. Introduces confusion matrix and its derived measures. Comprehensively describes the properties of F1, Matthews’ correlation coefficient (MCC), area under the receiver operating characteristic curve (AUC-ROC), and area under the precision-recall curve (AUC-PR), as well as discusses their advantages and disadvantages when using for microbiome data. Offers all related R codes and the datasets from the authors’ first-hand microbiome research and publicly available data.

Table of Contents:
Preface Acknowledgements About the Authors Chapter 1 Introduction to Machine Learning Chapter 2 Overview of Machine Learning in Microbiome Research Chapter 3 Accessing Model Accuracy and Goodness of Fit Tests for Normality Chapter 4 Overfitting and Underfitting Chapter 5 Assessing Model Accuracy Using Cross-Validation Chapter 6 Feature Engineering and Model Selection Chapter 7 Logistic Regression Chapter 8 Support Vector Machines Chapter 9 Classification Trees Chapter 10 Random Forest Chapter 11 The Evolution of Tree-Based Algorithms Chapter 12 Extreme Gradient Boosting (XGBoost) Chapter 13 Artificial Neural Networks and Deep Learning Chapter 14 Machine Learning Microbiome with SIAMCAT Chapter 15 Basic Performance Metrics for Machine Learning Models Chapter 16 Matthews Correlation Coefficient Chapter 17 Area Under the Receiver Operating Characteristic Curve (AUC-ROC) Chapter 18 Area Under the Precision-Recall Curve (AUC-PR) Chapter 19 Comparisons of Machine Learning Classification Models with Tidymodels

About the Author :
Dr. Yinglin Xia is a Clinical Professor in the Department of Medicine at the University of Illinois Chicago. He has published six books on statistical analysis of microbiome and metabolomics data and more than 180 statistical methodology and research papers in peer-reviewed journals. He serves on the editorial boards of several scientific journals including as an Associate Editor of Gut Microbes and has served as a reviewer for over 100 scientific journals. Dr. Jun Sun is a tenured Professor of Medicine at the University of Illinois Chicago and an internationally recognized expert on microbiome and human diseases, e.g., vitamin D receptor in inflammation, dysbiosis and intestinal dysfunction in amyotrophic lateral sclerosis (ALS). Her lab is the first to discover that chronic effects and molecular mechanisms of Salmonella infection and risk of colon cancer. Dr. Sun has published over 260 scientific articles in peer-reviewed journals and 10 books on microbiome.


Best Sellers


Product Details
  • ISBN-13: 9781041005247
  • Publisher: Taylor & Francis Ltd
  • Publisher Imprint: CRC Press
  • Height: 234 mm
  • No of Pages: 736
  • Width: 156 mm
  • ISBN-10: 1041005245
  • Publisher Date: 23 Dec 2025
  • Binding: Hardback
  • Language: English
  • Series Title: Chapman & Hall/CRC Biostatistics Series


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning for Microbiome Statistics: (Chapman & Hall/CRC Biostatistics Series)
Taylor & Francis Ltd -
Machine Learning for Microbiome Statistics: (Chapman & Hall/CRC Biostatistics Series)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning for Microbiome Statistics: (Chapman & Hall/CRC Biostatistics Series)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!