Handbook on Federated Learning
Home > Computing and Information Technology > Computer science > Artificial intelligence > Handbook on Federated Learning: Advances, Applications and Opportunities
Handbook on Federated Learning: Advances, Applications and Opportunities

Handbook on Federated Learning: Advances, Applications and Opportunities


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Mobile, wearable, and self-driving telephones are just a few examples of modern distributed networks that generate enormous amount of information every day. Due to the growing computing capacity of these devices as well as concerns over the transfer of private information, it has become important to process the part of the data locally by moving the learning methods and computing to the border of devices. Federated learning has developed as a model of education in these situations. Federated learning (FL) is an expert form of decentralized machine learning (ML). It is essential in areas like privacy, large-scale machine education and distribution. It is also based on the current stage of ICT and new hardware technology and is the next generation of artificial intelligence (AI). In FL, central ML model is built with all the data available in a centralised environment in the traditional machine learning. It works without problems when the predictions can be served by a central server. Users require fast responses in mobile computing, but the model processing happens at the sight of the server, thus taking too long. The model can be placed in the end-user device, but continuous learning is a challenge to overcome, as models are programmed in a complete dataset and the end-user device lacks access to the entire data package. Another challenge with traditional machine learning is that user data is aggregated at a central location where it violates local privacy policies laws and make the data more vulnerable to data violation. This book provides a comprehensive approach in federated learning for various aspects.

Table of Contents:
Introduction to Federated Learning: Methods, and Classifications. Go Local, Go Global and Go Fusion - How to pick data from various contexts. Federated Learning Architectures, Opportunities, and Applications. Secure and Private Federated Learning through Encrypted Parameter Aggregation. Navigating Privacy Concerns in Federated Learning: A GDPR-Focused Analysis. A Federated Learning Approach for Resource-Constrained IoT Security Monitoring. Efficient Federated Learning Techniques for Data Loss Prevention in Cloud Environment. Maximizing Fog Computing Efficiency with Federated Multi-Agent Deep Reinforcement Learning. Future of Medical Research with a data-driven Federated Learning Approach. Collaborative Federated Learning in Healthcare Systems. Federated Learning for Efficient Cardiac Disease Prediction based on Hyper Spectral Feature Selection using Deep Spectral Convolution Neural Network. A Federated Learning based Alzheimer’s Disease Prediction. Detecting Device Sensors of Luxury Hotel Using Blockchain Based Federated Learning to Increase Customer Satisfaction. Navigating the Complexity of Macro-Tasks: Federated Learning as a Catalyst for Effective Crowd Coordination. Stock Market Prediction via Twitter Sentiment Analysis using BERT: A Federated Learning Approach.

About the Author :
Saravanan Krishnan is working as Associate Professor at the Department of Computer Science & Engineering, College of Engineering, Guindy, Anna University, Tirunelveli, India. He has published papers in 14 international conferences and 30 reputed journals. He has also written 16 book chapters and nine books with reputed publishers. He is an active researcher and academician. Also, he is reviewer for many reputed journals published by Elsevier, IEEE etc. A. Jose Anand is working as Professor at the Department of Electronics and Communication Engineering, KCG College of Technology, Chennai, India. He has one year of industrial experience and twenty-four years of teaching experience. He has presented several papers at conferences. He has published several papers in reputed journals. He has also published books for polytechnic & engineering subjects. He is a Member of CSI, IEI, IET, IETE, ISTE, INS, QCFI and EWB. His current research interest is in Wireless Sensor Networks, Embedded Systems, IoT, Machine Learning and Image Processing, etc. R. Srinivasan is working as Professor at the Department of Computer Science and Engineering, School of Computing, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India having vast teaching experience. He received a Ph.D. in Computer Science and Engineering from Vel Tech University. His research interest spans across Computer Networking, Wireless Sensor Networks and Internet of Things (IoT). Much of his work has been on improvising the understanding, design and the performance of networked computer systems and performance evaluation. He is a recognised supervisor at Vel Tech University guiding 8 research scholars. He has published over 25 papers in reputed journals and conferences. He had delivered technical sessions to various reputed institutes. He has been a reviewer member for many conferences and has served as technical committee member. He is also a member in many professional societies and a member in IEEE. He has published several reputed articles. He is presently Editor in Chief for Wireless Networks, Peer-to-Peer Networking and Applications- Springer Series. R. Kavitha received a master’s in software engineering from College of Engineering, Anna University, India and Ph. D in Computer Science and Engineering from Vel Tech, Chennai, India. Her research areas are Machine Learning, Image Processing and Software Engineering. She worked as Professor at Vel Tech, Chennai with 15 years of teaching experience. She had guided projects of many UG and PG students. She is a recognised supervisor at Vel Tech University guiding 8 research scholars. She has published over 35 papers in reputed journals. She is an active member of IEEE and IEEE WIE and has been a part of events in association with professional societies. She had delivered technical sessions to various reputed institutes. She has been a reviewer member for many conferences and has served as technical committee member. S. Suresh was a Professor of Cloud Big Data and Analytics, Faculty of Computer Science and Engineering at P.A. College of Engineering and Technology, India. He undertook extensive research on Big Data & Analytics, Internet of Things and Machine Learning. He wrote more than 30 scientific papers some of which have been published in well-known journals from Elsevier, Springer, etc. and presented at important conferences. In his lifetime, he had received various best paper and best speaker awards. Suresh authored 6 books and numerous book chapters. He fetched research and events grants from various Indian agencies. His research is summarized at Google Scholar Citation. He also regularly tutors, advises and provides consulting support to regional firms with respect to their Cloud Big Data Analytics, IoT, Machine Learning and Mobile Application Development.


Best Sellers


Product Details
  • ISBN-13: 9781003837527
  • Binding: Digital (delivered electronically)
  • Sub Title: Advances, Applications and Opportunities
  • ISBN-10: 1003837522
  • Language: English


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Handbook on Federated Learning: Advances, Applications and Opportunities
-
Handbook on Federated Learning: Advances, Applications and Opportunities
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Handbook on Federated Learning: Advances, Applications and Opportunities

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!