Differential and Riemannian Manifolds
Home > Mathematics and Science Textbooks > Mathematics > Geometry > Differential and Riemannian geometry > Differential and Riemannian Manifolds: (160 Graduate Texts in Mathematics)
Differential and Riemannian Manifolds: (160 Graduate Texts in Mathematics)

Differential and Riemannian Manifolds: (160 Graduate Texts in Mathematics)


     0     
5
4
3
2
1



International Edition


X
About the Book

This is the third version of a book on Differential Manifolds; in this latest expansion three chapters have been added on Riemannian and pseudo-Riemannian geometry, and the section on sprays and Stokes' theorem have been rewritten.This text provides an introduction to basic concepts in differential topology, differential geometry and differential equations. In differential topology one studies classes of maps and the possibility of finding differentiable maps in them, and one uses differentiable structures on manifolds to determine their topological structure. In differential geometry one adds structures to the manifold (vector fields, sprays, a metric, and so forth) and studies their properties. In differential equations one studies vector fields and their integral curves, singular points, stable and unstable manifolds, and the like.

Table of Contents:
I Differential Calculus.- §1. Categories.- §2. Topological Vector Spaces.- §3. Derivatives and Composition of Maps.- §4. Integration and Taylor’s Formula.- §5. The Inverse Mapping Theorem.- II Manifolds.- §1. Atlases, Charts, Morphisms.- §2. Submanifolds, Immersions, Submersions.- §3. Partitions of Unity.- §4. Manifolds with Boundary.- III Vector Bundles.- §1. Definition, Pull Backs.- §2. The Tangent Bundle.- §3. Exact Sequences of Bundles.- §4. Operations on Vector Bundles.- §5. Splitting of Vector Bundles.- IV Vector Fields and Differential Equations.- §1. Existence Theorem for Differential Equations.- §2. Vector Fields, Curves, and Flows.- §3. Sprays.- §4. The Flow of a Spray and the Exponential Map.- §5. Existence of Tubular Neighborhoods.- §6. Uniqueness of Tubular Neighborhoods.- V Operations on Vector Fields and Differential Forms.- §1. Vector Fields, Differential Operators, Brackets.- §2. Lie Derivative.- $3. Exterior Derivative.- §4. The Poincaré Lemma.- §5. Contractions and Lie Derivative.- §6. Vector Fields and 1-Forms Under Self Duality.- §7. The Canonical 2-Form.- §8. Darboux’s Theorem.- VI The Theorem of Frobenius.- §1. Statement of the Theorem.- §2. Differential Equations Depending on a Parameter.- §3. Proof of the Theorem.- §4. The Global Formulation.- §5. Lie Groups and Subgroups.- VII Metrics.- §1. Definition and Functoriality.- §2. The Hilbert Group.- §3. Reduction to the Hilbert Group.- §4. Hilbertian Tubular Neighborhoods.- §5. The Morse—Palais Lemma.- §6. The Riemannian Distance.- §7. The Canonical Spray.- VIII Covariant Derivatives and Geodesics.- §1. Basic Properties.- §2. Sprays and Covariant Derivatives.- §3. Derivative Along a Curve and Parallelism.- §4. The Metric Derivative.- §5. More LocalResults on the Exponential Map.- §6. Riemannian Geodesic Length and Completeness.- IX Curvature.- §1. The Riemann Tensor.- §2. Jacobi Lifts.- §3. Application of Jacobi Lifts to dexpx.- §4. The Index Form, Variations, and the Second Variation Formula.- §5. Taylor Expansions.- X Volume Forms.- §1. The Riemannian Volume Form.- §2. Covariant Derivatives.- §3. The Jacobian Determinant of the Exponential Map.- §4. The Hodge Star on Forms.- §5. Hodge Decomposition of Differential Forms.- XI Integration of Differential Forms.- §1. Sets of Measure 0.- §2. Change of Variables Formula.- §3. Orientation.- §4. The Measure Associated with a Differential Form.- XII Stokes’ Theorem.- §1. Stokes’ Theorem for a Rectangular Simplex.- §2. Stokes’ Theorem on a Manifold.- §3. Stokes’ Theorem with Singularities.- XIII Applications of Stokes’ Theorem.- §1. The Maximal de Rham Cohomology.- §2. Moser’s Theorem.- §3. The Divergence Theorem.- §4. The Adjoint of d for Higher Degree Forms.- §5. Cauchy’s Theorem.- §6. The Residue Theorem.- Appendix The Spectral Theorem.- §1. Hilbert Space.- §2. Functionals and Operators.- §3. Hermitian Operators.

Review :
S. Lang Differential and Riemannian Manifolds "An introduction to differential geometry, starting from recalling differential calculus and going through all the basic topics such as manifolds, vector bundles, vector fields, the theorem of Frobenius, Riemannian metrics and curvature. Useful to the researcher wishing to learn about infinite-dimensional geometry." -MATHEMATICAL REVIEWS


Best Sellers


Product Details
  • ISBN-13: 9780387943381
  • Publisher: Springer-Verlag New York Inc.
  • Publisher Imprint: Springer-Verlag New York Inc.
  • Edition: Revised edition
  • Language: English
  • Returnable: N
  • Series Title: 160 Graduate Texts in Mathematics
  • ISBN-10: 0387943382
  • Publisher Date: 09 Mar 1995
  • Binding: Hardback
  • Height: 234 mm
  • No of Pages: 364
  • Returnable: N
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Differential and Riemannian Manifolds: (160 Graduate Texts in Mathematics)
Springer-Verlag New York Inc. -
Differential and Riemannian Manifolds: (160 Graduate Texts in Mathematics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Differential and Riemannian Manifolds: (160 Graduate Texts in Mathematics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!