Principles of Semiconductor Devices
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Electronic devices and materials > Principles of Semiconductor Devices: (The Oxford Series in Electrical and Computer Engineering)
Principles of Semiconductor Devices: (The Oxford Series in Electrical and Computer Engineering)

Principles of Semiconductor Devices: (The Oxford Series in Electrical and Computer Engineering)


     0     
5
4
3
2
1



International Edition


X
About the Book

The dimensions of modern semiconductor devices are reduced to the point where classical semiconductor theory, including the concepts of continuous particle concentration and continuous current, becomes questionable. Further questions relate to two-dimensional transport in the most important field-effect devices and one-dimensional transport in nanowires and carbon nanotubes. Designed for upper-level undergraduate and graduate courses, Principles of Semiconductor Devices, Second Edition, presents the semiconductor-physics and device principles in a way that upgrades classical semiconductor theory and enables proper interpretations of numerous quantum effects in modern devices. The semiconductor theory is directly linked to practical applications, including the links to the SPICE models and parameters that are commonly used during circuit design. The text is divided into three parts: Part I explains semiconductor physics; Part II presents the principles of operation and modeling of the fundamental junctions and transistors; and Part III provides supplementary topics, including a dedicated chapter on the physics of nanoscale devices, description of the SPICE models and equivalent circuits that are needed for circuit design, introductions to the most important specific devices (photonic devices, JFETs and MESFETs, negative-resistance diodes, and power devices), and an overview of integrated-circuit technologies. The chapters and the sections in each chapter are organized so as to enable instructors to select more rigorous and design-related topics as they see fit. New to this Edition * A new chapter on the physics of nanoscale devices * A revised chapter on the energy-band model and fully reworked and updated material on crystals to include graphene and carbon nanotubes * A revised P-N junction chapter to emphasize the current mechanisms that are relevant to modern devices * JFETs and MESFETs in a stand-alone chapter * Fifty-seven new problems and eleven new examples

Table of Contents:
Contents PART I INTRODUCTION TO SEMICONDUCTORS 1 lNTRODUCTION TO CRYSTALS AND CURRENT CARRIERS IN SEMICONDUCTORS, THE ATOMIC-BOND MODEL 1.1 INTRODUCTION TO CRYSTALS 1.1.1 Atomic Bonds 1.1.2 Three-Dimensional Crystals 1.1.3 Two-Dimensional Crystals: Graphene and Carbon Nanotubes 1.2 CURRENT CARRIERS 1.2.1 Two Types of Current Carriers in Semiconductors 1.2.2 N·Type and P-Type Doping 1.2.3 Electroneutrality Equation 1.2.4 Electron and Hole Generation and Recombination in Thermal Equilibrium 1.3 BASICS OF CRYSTAL GROWTH AND DOPING TECHNIQUES 1.3.1 Crystal-Growth Techniques 1.3.2 Doping Techniques Summary Problems Review Questions 2 THE ENERGY-BAND MODEL 12.1 ELECTRONS AS WAVES 2.1.1 De Broglie Relationship Between Particle and Wave Properties 2.1.2 Wave Function and Wave Packet 2.1.3 Schrodinger Equation 2.2 ENERGY LEVELS IN ATOMS AND ENERGY BANDS IN CRYSTALS 2.2.1 Atomic Structure 2.2.2 Energy Bands in Metals 2.2.3 Energy Gap and Energy Bands in Semiconductors and Insulators 12.3 ELECTRONS AND HOLES AS PARTICLES 2.3.1 Effective Mass and Real E-k Diagrams 2.3.2 The Question of Electron Size: The Uncertainty Principle 2.3.3 Density of Electron States 2.4 POPULATION OF ELECTRON STATES, CONCENTRATIONS OF ELECTRONS A:"D HOLES 2.4.1 Fermi-Dirac Distribution 2.4.2 Maxwell-Boltzmann Approximation and Effective Density of States 2.4.3 Fermi Potential and Doping 2.4.4 Nonequilibrium Carrier Concentrations and Quasi-Fermi Levels Summary Problems Review Questions 3 DRIFT 3.1 ENERGY BANDS WITH APPLIED ELECTRIC FIELD 3.1.1 Energy-Band Presentation of Drift Current 3.1.2 Resistance and Power Dissipation due to Carrier Scattering 3.2 OHM'S LAW, SHEET RESISTANCE, AND CONDUCTIVITY 3.2.1 Designing Integrated-Circuit Resistors 3.2.2 Differential Form of Ohm's Law 3.2.3 Conductivity Ingredients 3.3 CARRIER MOBILITY 3.3.1 Thermal and Drift Velocities 3.3.2 Mobility Definition 3.3.3 Scattering Time and Scattering Cross Section 3.3.4 Mathieson's Rule °3.3.5 Hall Effect Summary Problems Review Questions 4 DlFFUSION 4.1 DIFFUSION-CURRENT EQUATION 4.2 DIFFUSION COEFFICIENT 4.2.1 Einstein Relationship BL4.2.2 Haynes-Shockley Experiment 4.2.3 Arrhenius Equation 4.3 BASIC CONTINUITY EQUATION Summary Problems Review Questions 5 GENERATION AND RECOMBINATION 5.1 GENERATION AND RECOMBINATION MECHANISMS 5.2 GENERAL FORM OF THE CONTINUITY EQUATION 5.2.1 Recombination and Generation Rates 5.2.2 Minority-Carrier Lifetime 5.2.3 Diffusion Length 5.3 GENERATION AND RECOMBINATION PHYSICS AND SHOCKLEYREAD- HALL (SRH) THEORY 5.3.1 Capture and Emission Rates in Thermal Equilibrium 5.3.2 Steady-State Equation for the Effective Thermal Generation/Recombination Rate 5.3.3 Special Cases 5.3.4 Surface Generation and Recombination Summary Problems Review Questions PART II FUNDAMENTAL DEVICE STRUCTURES 6 P-N JUNCTION 6.1 P-N JUNCTION PRINCIPLES 6.1.1 p-~ Junction in Thermal Equilibrium 6.1.2 Reverse-Biased P-N Junction 6.1.3 Forward-Biased P-K Junction 6.1.4 Breakdown Phenomena 6.2 DC MODEL 6.2.1 Basic Current-Voltage (I-V) Equation 6.2.2 Important Second-Order Effects 6.2.3 Temperature Effects 6.3 CAPACITA CE OF REVERSE-BIASED P-:-I JUNCTION 6.3.1 C-V Dependence 6.3.2 Depletion-Layer Width: Solving the Poisson Equation 6.3.3 SPICE Model for the Depletion-Layer Capacitance 6.4 STORED-CHARGE EFFECTS 6.4.1 Stored Charge and Transit Time 6.4.2 Relationship Between the Transit Time and the Minority-Carrier Lifetime 6.4.3 Switching Characteristics: Reverse-Recovery Time Summary Problems Review Questions 7 METAL-SEMICONDUCTOR CONTACT AND MOS CAPACITOR 7.1 METAL-SEMICONDUCTOR CONTACT 7.1.1 Schottky Diode: Rectifying Metal-Semiconductor Contact 7.1.2 Ohmic Metal-Semiconductor Contacts 7.2 MOS CAPACITOR 7.2.1 Properties of the Gate Oxide and the Oxide-Semiconductor Interface 7.2.2 C-V Curve and the Surface-Potential Dependence on Gate Voltage 7.2.3 Energy-Band Diagrams ·7.2.4 Flat4Band Capacitance and Debye Length Summary Problems Review Questions 8 MOSFET 8.1 MOSFET PRINCIPLES B.1.1 MOSFET Structure 8.1.2 MOSFET as a Voltage-Controlled Switch B.1.3 The Threshold Voltage and the Body Effect B.1.4 MOSFET as a Voltage-Controlled Current Source: Mechanisms of Current Saturation 8.2 PRINCIPAL CURRENT-VOLTAGE CHARACTERISTICS AND EQUATIONS 8.2.1 SPICE LEVEL 1 Model 8.2.2 SPICE LEVEL 2 Model 8.2.3 SPICE LEVEL 3 Model: Principal Effects 8.3 SECO:\D-OROER EFFECTS 8.3.1 Mobility Reduction with Gate Voltage 8.3.2 Velocity Saturation (Mobility Reduction with Drain Voltage) 8.3.3 Finite Output Resistance 8.3.4 Threshold-Voltage-Related Short-Channel Effects 8.3.5 Threshold Voltage Related Narrow-Channel Effects 8.3.6 Subthreshold Current 8.4 Nanoscale MOSFETs 8.4.1 Down-Scaling Benefits and Rules 8.4.2 Leakage Currents 8.4.3 Advanced MOSFETs "8.5 MOS-BASED MEMORY DEVICES 8.5.1 1C1T DRAM Cell 8.5.2 Flash-Memory Cell Summary Problems Review Questions 9 BJT 9.1 B.JT PRINCIPLES 9.1.1 BJT as a Voltage-Controlled Current Source 9.1.2 BJT Currents and Gain Definitions 9.1.3 Dependence of ? and ? Current Gains on Technological Parameters 9.1.4 The Four Modes of Operation: BJT as a Switch 9.1.5 Complementary BJT 9.1.6 BJT Versus MOSFET 9.2 PRINCIPAL CURRENT-VOLTAGE CHARACTERISTICS, EBERE-MOLL MODEL IN SPICE 9.2.1 Injection Version 9.2.2 Transport Version 9.2.3 SPICE Version 9.3 SECOND·ORDER EFFECTS 9.3.1 Early Effect: Finite Dynamic Output Resistance 9.3.2 Parasitic Resistances 9.3.3 Dependence of Common-Emitter Current Gain on Transistor Current: Low-Current Effects 9.3.4 Dependence of Common-Emitter Current Gain on Transistor Current: Gummel-Poon Model for High-Current Effects 9.4 HETEROJUNCTION BIPOLAR TRANSISTOR Summary Problems Review Questions PART III SUPPLEMENTARY TOPICS 10 PHYSICS OF NANOSCALE DEVICES 10.1 SINGLE-CARRIER EVENTS 10.1.1 Beyond the Classical Principle of Continuity 10.1.2 Current-Time Form of Uncertainty Principle 10.1.3 Carrier-Supply Limit to Diffusion Current 10.1.4 Spatial Uncertainty 10.1.5 Direct Nonequilibrium Modeling of Single-Carrier Events 10.2 TWO-DIMENSIONAL TRANSPORT IN MOSFETs AND HEMTs 10.2.1 Quantum Confinement 10.2.2 HEMT Structure and Characteristics 10.2.3 Application of Classical MOSFET Equations to Two-Dimensional Transport in MOSFETs and HEMTs 10.3 ONE-DIMENSUIONAL TRANSPORT IN NANOWIRES AND CARBON NANOTUBES 10.3.1 Ohmic Transport in Nanowire and Carbon-Nanotube FETs 10.3.2 One-Dimensional Ballistic Transport and the Quantum Conductance Limit Summary Problems Review Questions II DEVICE ELECTRONICS, EQUIVALENT CIRCUITS A D SPICE PARAMETERS lI.l DIODES 11.1.1 Static Model and Parameters in SPICE 11.1.2 Large-Signal Equivalent Circuit in SPICE 11.1.3 Parameter Measurement 11.1.4 Small-Signal Equivalent Circuit ll.2 MOSFET 11.2.1 Static Model and Parameters; LEVEL 3 in SPICE 11.2.2 Parameter Measurement 11.2.3 Large-Signal Equivalent Circuit and Dynamic Parameters in SPICE 11.2.4 Simple Digital ~1od.el 11.2.5 Small-Signal Equivalent Circuit 11.3 BJT 11.3.1 Static Model and Parameters: Ebers-Moll and Gummel-Poon Levels in SPICE 11.3.2 Parameter Measurement 11.3.3 Large-Signal Equivalent Circuit and Dynamic Parameters in SPICE 11.3.4 Small-Signal Equivalent Circuit Summary Problems Review Questions 12 PHOTONIC DEVICES 12.1 LIGHT EMITTING DIODES (LED) 12.2 PHOTODETECTORS AND SOLAR CELLS 12.2.1 Biasing for Photodetector and Solar-Cell Applications 12.2.2 Carrier Generation in Photodetectors and Solar Cells 12.2.3 Photocurrent Equation 12.3 LASERS 12.3.1 Stimulated Emission, Inversion Population, and Other Fundamental Concepts 12.3.2 A Typical Heterojunction Laser Summary Problems Review Questions 13 JFET AND MESFET 13.1 JFET 13.1.1 JFET Structure 13.1.2 JFET Characteristics 13.1.3 SPICE Model and Parameters 13.2 MESFET 13.2.1 MESFET Structure 13.2.2 MESFET Characteristics 13.2.3 SPICE Model and Parameters Summary Problems Review Questions 14 POWER DEVICES 14.1 POWER DIODES 14.1.1 Drift Region in Power Devices 14.1.2 Switching Characteristics 14.1.3 Schottky Diode 14.2 POWER MOSFET 14.3 IGBT 14.4 THYRISTOR Summary Problems Review Questions 15 NEGATIVE RESISTANCE DIODES 15.1 AMPLIFICATION AI'D OSCILLATION BY NEGATIVE DYNAMIC RESISTANCE 15.2 GUNN DIODE 15.3 IMPATT DIODE 15.4 TUNNEL DIODE Summary Problems Review Questions 16 INTEGRATED-CIRCUIT TECHNOLOGIES 16.1 A DIODE IN IC TECHNOLOGY 16.1.1 Basic Structure 16.1.2 Lithography 16.1.3 Process Sequence 16.1.4 Diffusion Profiles 16.2 MOSFET TECHNOLOGIES 16.2.1 Local Oxidation of Silicon (LOCOS) 16.2.2 NMOS Technology 16.2.3 Basic CMOS Technology 16.2.4 Silicon-on-Insulator (SOl) Technology 16.3 BIPOLAR IC TECHNOLOGIES 16.3.1 IC Structure of NPN BJT 16.3.2 Standard Bipolar Technology Process 16.3.3 Implementation of PNP BJTs, Resistors, Capacitors, and Diodes 16.3.4 Parasitic IC Elements not Included in Device Models 16.3.5 Layer Merging 16.3.6 BiCMOS Technology Summary Problems Review Questions

About the Author :
Sima Dimitrijev is Professor at the Griffith School of Engineering and Deputy Director of Queensland Micro- and Nanotechnology Centre at Griffith University in Australia. He is the author of Understanding Semiconductor Devices (OUP, 2000) as well as numerous other publications in the areas of MOSFET technology, modeling, and applications.

Review :
"This book is better than other texts available on this topic because of its straightforward intuitive descriptions combined with the artfully presented, detailed, and quantitatively rendered illustrations."-- Matthew Grayson, Northeastern University "The author is eloquent and presents complex material in a logical sequence, which provides for comparatively easy reading. I find the many numerical examples (including the MatLab scripts) particularly useful from a pedagogical perspective since they invite students to become more actively engaged with the novel material and concepts. In addition, they provide visual support for some otherwise abstract mathematical relationships."--Godi Fischer, University of Rhode Island


Best Sellers


Product Details
  • ISBN-13: 9780195388039
  • Publisher: Oxford University Press Inc
  • Publisher Imprint: Oxford University Press Inc
  • Edition: Revised edition
  • Language: English
  • Returnable: Y
  • Spine Width: 28 mm
  • Width: 191 mm
  • ISBN-10: 0195388038
  • Publisher Date: 31 Mar 2011
  • Binding: Hardback
  • Height: 236 mm
  • No of Pages: 640
  • Series Title: The Oxford Series in Electrical and Computer Engineering
  • Weight: 1202 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Principles of Semiconductor Devices: (The Oxford Series in Electrical and Computer Engineering)
Oxford University Press Inc -
Principles of Semiconductor Devices: (The Oxford Series in Electrical and Computer Engineering)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Principles of Semiconductor Devices: (The Oxford Series in Electrical and Computer Engineering)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!