Buy Machine Learning, Big Data, and IoT for Medical Informatics
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine Learning, Big Data, and IoT for Medical Informatics: (Intelligent Data-Centric Systems)
Machine Learning, Big Data, and IoT for Medical Informatics: (Intelligent Data-Centric Systems)

Machine Learning, Big Data, and IoT for Medical Informatics: (Intelligent Data-Centric Systems)


     0     
5
4
3
2
1



International Edition


X
About the Book

Machine Learning, Big Data, and IoT for Medical Informatics focuses on the latest techniques adopted in the field of medical informatics. In medical informatics, machine learning, big data, and IOT-based techniques play a significant role in disease diagnosis and its prediction. In the medical field, the structure of data is equally important for accurate predictive analytics due to heterogeneity of data such as ECG data, X-ray data, and image data. Thus, this book focuses on the usability of machine learning, big data, and IOT-based techniques in handling structured and unstructured data. It also emphasizes on the privacy preservation techniques of medical data. This volume can be used as a reference book for scientists, researchers, practitioners, and academicians working in the field of intelligent medical informatics. In addition, it can also be used as a reference book for both undergraduate and graduate courses such as medical informatics, machine learning, big data, and IoT.

Table of Contents:
1. Predictive analytics and machine learning for medical informatics: A survey of tasks and techniques 2. Geolocation-aware IoT and cloud-fog-based solutions for healthcare 3. Machine learning vulnerability in medical imaging 4. Skull stripping and tumor detection using 3D U-Net 5. Cross color dominant deep autoencoder for quality enhancement of laparoscopic video: A hybrid deep learning and range-domain filtering-based approach 6. Estimating the respiratory rate from ECG and PPG using machine learning techniques 7. Machine learning-enabled Internet of Things for medical informatics 8. Edge detection-based segmentation for detecting skin lesions 9. A review of deep learning approaches in glove-based gesture classification 10. An ensemble approach for evaluating the cognitive performance of human population at high altitude 11. Machine learning in expert systems for disease diagnostics in human healthcare 12. An entropy-based hybrid feature selection approach for medical datasets 13. Machine learning for optimizing healthcare resources 14. Interpretable semi-supervised classifier for predicting cancer stages 15. Applications of blockchain technology in smart healthcare: An overview 16. Prediction of leukemia by classification and clustering techniques 17. Performance evaluation of fractal features toward seizure detection from electroencephalogram signals 18. Integer period discrete Fourier transform-based algorithm for the identification of tandem repeats in the DNA sequences 19. A blockchain solution for the privacy of patients' medical data 20. A novel approach for securing e-health application in a cloud environment 21. An ensemble classifier approach for thyroid disease diagnosis using the AdaBoostM algorithm 22. A review of deep learning models for medical diagnosis 23. Machine learning in precision medicine

About the Author :
Dr. Pardeep Kumar is a Professor in the Department of Computer Science & Engineering at Jaypee University of Information Technology (JUIT), Wakanaghat. With more than 17 years of extensive experience in higher education, Dr. Kumar has served as Executive General Chair of 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC) and 2024 Eighth International Conference on Parallel, Distributed and Grid Computing (PDGC) , Guest Editor of Special Issue on "Robust and Secure Data Hiding Techniques for Telemedicine Applications", Multimedia Tools and Applications: An International Journal, Lead Guest Editor of Special Issue on "Recent Developments in Parallel, Distributed and Grid Computing for Big Data", published in International Journal of Grid and Utility Computing, Guest Editor of Special Issue on "Advanced Techniques in Multimedia Watermarking", published in International Journal of Information and Computer Security. Dr. Kumar is an Associate Editor of IEEE Access Journal. Dr. Kumar’s research focus includes machine & deep learning optimized Internet of Things (IOT) solutions to real life complex problems; blockchain, Internet of Things, data science and artificial intelligence for smart cities including AI driven health and medical informatics, big data analytics. Dr. Kumar is an Associate Professor in the Department of Computer Engineering, School of Technology Management and Engineering, NMIMS University, Chandigarh Campus, Mumbai, India. Prior to joining NMIMS University, Dr. Kumar was associated with Jaypee University of Information Technology (JUIT), Wakanaghat, Himachal Pradesh, India. He completed his PhD in Computer Science & Engineering from Birla institute of Technology, Mesra, Ranchi. He has more than 17 years of teaching and research experience, has published over 120 research papers in reputed journals, edited more than eight books, and has presented at various national and international conferences. His primary area of research includes medical informatics, meta-heuristic algorithms, data clustering, swarm intelligence, pattern recognition, medical data analytics. Mohamed A. Tawhid earned his PhD in Applied Mathematics from the University of Maryland Baltimore County, Maryland, United States. From 2000 to 2002, he was a postdoctoral fellow at the Faculty of Management, McGill University, Montreal, Quebec, Canada. Currently, he is a Professor at Thompson Rivers University, Kamloops, British Columbia, Canada. He has published more than 75 peer-reviewed research papers, 13 book chapters and edited four special issues in international journals. He has also co-authored a book published by Springer. His research has been funded by Natural Sciences and Engineering Research Council (NSERC) grants. Moreover, he has served on several journals' editorial boards and worked on several industrial projects in Canada. Fatos Xhafa, PhD in Computer Science, is Full Professor at the Technical University of Catalonia (UPC), Barcelona, Spain. He has held various tenured and visiting professorship positions. He was a Visiting Professor at the University of Surrey, UK (2019/2020), Visiting Professor at the Birkbeck College, University of London, UK (2009/2010) and a Research Associate at Drexel University, Philadelphia, USA (2004/2005). He was a Distinguished Guest Professor at Hubei University of Technology, China, for the duration of three years (2016-2019). Prof. Xhafa has widely published in peer reviewed international journals, conferences/workshops, book chapters, edited books and proceedings in the field (H-index 55). He has been awarded teaching and research merits by the Spanish Ministry of Science and Education, by IEEE conferences and best paper awards. Prof. Xhafa has an extensive editorial service. He is founder and Editor-In-Chief of Internet of Things - Journal - Elsevier (Scopus and Clarivate WoS Science Citation Index) and of International Journal of Grid and Utility Computing, (Emerging Sources Citation Index), and AE/EB Member of several indexed Int'l Journals. Prof. Xhafa is a member of IEEE Communications Society, IEEE Systems, Man & Cybernetics Society and Founder Member of Emerging Technical Subcommittee of Internet of Things. His research interests include IoT and Cloud-to-thing continuum computing, massive data processing and collective intelligence, optimization, security and trustworthy computing and machine learning, among others. He can be reached at fatos@cs.upc.edu. Please visit also http://www.cs.upc.edu/~fatos/ and at http://dblp.uni-trier.de/pers/hd/x/Xhafa:Fatos


Best Sellers


Product Details
  • ISBN-13: 9780128217771
  • Publisher: Elsevier Science Publishing Co Inc
  • Publisher Imprint: Academic Press Inc
  • Height: 235 mm
  • No of Pages: 458
  • Weight: 829 gr
  • ISBN-10: 0128217774
  • Publisher Date: 16 Jun 2021
  • Binding: Paperback
  • Language: English
  • Series Title: Intelligent Data-Centric Systems
  • Width: 191 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning, Big Data, and IoT for Medical Informatics: (Intelligent Data-Centric Systems)
Elsevier Science Publishing Co Inc -
Machine Learning, Big Data, and IoT for Medical Informatics: (Intelligent Data-Centric Systems)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning, Big Data, and IoT for Medical Informatics: (Intelligent Data-Centric Systems)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!