Vehicular Networking
Home > Science, Technology & Agriculture > Transport technology and trades > Automotive technology and trades > Vehicular Networking: Automotive Applications and Beyond
Vehicular Networking: Automotive Applications and Beyond

Vehicular Networking: Automotive Applications and Beyond

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

During the last 15 years, the interest in vehicular communication has grown, especially in the automotive industry. Due to the envisioned mass market, projects focusing on Car-to-X communication experience high public visibility. This book presents vehicular communication in a broader perspective that includes more than just its application to the automotive industry. It provides, researchers, engineers, decision makers and graduate students in wireless communications with an introduction to vehicular communication focussing on car-to-x and train-based systems. Emphasizes important perspectives of vehicular communication including market area, application areas, and standardization issues as well as selected topics featuring aspects of developing, prototyping, and testing vehicular communication systems. Supports the reader in understanding common characteristics and differences between the various application areas of vehicular communication. Offers both an overview of the application area and an in-depth discussion of key technologies in these areas. Written by a wide range of experts in the field.

Table of Contents:
List of Contributors xiii Preface xv 1 Commercial and Public Use Applications 1 Dr. Hariharan Krishnan, Dr. Fan Bai and Dr. Gavin Holland 1.1 Introduction 2 1.1.1 Motivation 3 1.1.2 Contributions and benefits 3 1.1.3 Chapter organization 4 1.2 V2XApplications from the User Benefits Perspective 4 1.2.1 Application value 5 1.3 Application Characteristics and Network Attributes 8 1.3.1 Application characteristics 8 1.3.2 Network attributes 10 1.4 Application Classification and Categorization 12 1.4.1 Characterization based on application characteristics 12 1.4.2 Characterization based on network attributes 15 1.4.3 Application classification . . . . 18 1.5 Market Perspectives and Challenges for Deployment 21 1.5.1 Fleet penetration 21 1.5.2 System rollout options 21 1.5.3 Market penetration analysis 23 1.5.4 System rollout 25 1.5.5 Role of infrastructure 25 1.6 Summary and Conclusions 26 References 27 2 Governmental and Military Applications 29 Anthony Maida 2.1 Introduction 29 2.2 Vehicular Networks for First Responders 30 2.2.1 Public safety communications 30 2.2.2 Vehicular communications 31 2.3 The Need for Public Safety Vehicular Networks 33 2.4 State of Vehicular Network Technology 35 2.4.1 Incident Area Networks 35 2.4.2 Jurisdictional Area Networks 36 2.4.3 Extended Area Networks 38 2.5 Vehicular Networks for Military Use 40 2.6 Conclusions 42 References 42 3 Communication Systems for Car-2-X Networks 45 Daniel D. Stancil, Fan Bai and Lin Cheng 3.1 Overview of theV2XEnvironment 46 3.1.1 Vehicle-to-Infrastructure 46 3.1.2 Vehicle-to-Vehicle 46 3.1.3 Antenna requirements 47 3.2 V2XChannel Models 48 3.2.1 Deterministic models 48 3.2.2 Geometry-based statistical models 48 3.2.3 Multi-tap models 50 3.3 V2XChannelProperties 50 3.3.1 Empirical measurement platform 51 3.3.2 Large-scale path loss 51 3.3.3 Fading statistics 53 3.3.4 Coherence time and Doppler spectrum 53 3.3.5 Coherence bandwidth and delay spread profile 56 3.4 Performance of 802.11p in the V2X Channel 58 3.4.1 Impact of channel properties on OFDM 59 3.4.2 Potential equalization enhancement schemes 61 3.5 Vehicular Ad hoc Network Multichannel Operation 61 3.5.1 Multichannel MAC (IEEE 1609.4) 62 3.5.2 Performance evaluation of the IEEE 1609.4 multichannel MAC 63 3.5.3 Other solutions for multichannel operations 65 3.6 Vehicular Ad hoc Network Single-hop Broadcast and its Reliability Enhancement Schemes 66 3.6.1 Reliability analysis of DSRC single-hop broadcast scheme 66 3.6.2 Reliability analysis of DSRC-based VSC applications 68 3.6.3 Reliability enhancement schemes for single-hop broadcast scheme 69 3.7 Vehicular Ad hoc Network Multi-hop Information Dissemination Protocol Design 71 3.7.1 Multi-hop broadcast protocols in dense VANETs 71 3.7.2 Multi-hop broadcast protocols in sparse VANETs 73 3.8 Mobile IP Solution in VANETs 75 3.8.1 Mobile IP solution 75 3.8.2 Mobile IP solution tailored to VANET scenarios 76 3.9 Future Research Directions and Challenges 77 3.9.1 Physical layer perspective 77 3.9.2 Networking perspective 77 References 78 4 Communication Systems for Railway Applications 83 Benoît Bouchez and Luc de Coen 4.1 Evolution of Embedded Computers and Communication Networks in Railway Applications 83 4.2 Train Integration in a Global Communication Framework 84 4.3 Communication Classes and Related Communication Requirements 85 4.3.1 Real-time data 85 4.3.2 Non-real-time message data 86 4.3.3 Streaming data 88 4.4 Expected Services from a Railway Communication System and the Related Requirements 88 4.4.1 Automatic Train Control 88 4.4.2 Passenger Information System 89 4.4.3 Video 90 4.4.4 Maintenance 91 4.4.5 On-board Internet access 91 4.5 Qualitative and Quantitative Approach for Dimensioning Wireless Links 92 4.5.1 Environmental influence 92 4.5.2 Global propagation model 92 4.5.3 Train motion influence 93 4.5.4 Regulation and licensing 93 4.6 Existing Wireless Systems Applicable to Railway Communication Systems 93 4.6.1 Magnetic coupling technology 93 4.6.2 WLAN/WMAN technologies 94 4.6.3 Cellular technologies 96 4.6.4 Satellite link technologies 99 4.7 Networks for On-board Communication and Coupling with the Wayside 99 4.7.1 Multifunction Vehicle Bus 99 4.7.2 Wire Train Bus 100 4.7.3 Ethernet 100 4.7.4 Coupling on-board communication with wayside communication 100 4.8 Integration of Existing Technologies for Future Train Integration in a Global Communication Framework 101 4.8.1 European Rail Traffic Management System 101 4.8.2 MODURBAN Communication System 102 4.9 Conclusion 103 References 103 5 Security and Privacy Mechanisms for Vehicular Networks 105 Panos Papadimitratos 5.1 Introduction 105 5.2 Threats 107 5.3 Security Requirements 108 5.4 Secure VC Architecture Basic Elements 109 5.4.1 Authorities 109 5.4.2 Node identification 110 5.4.3 Trusted components 110 5.4.4 Secure communication 111 5.5 Secure and Privacy-enhancing Vehicular Communication 111 5.5.1 Basic security 111 5.5.2 Secure neighbor discovery 112 5.5.3 Secure position-based routing 113 5.5.4 Additional privacy-enhancing mechanisms 113 5.5.5 Reducing the cost of security and privacy enhancing mechanisms 115 5.6 Revocation 116 5.7 Data Trustworthiness 119 5.7.1 Securing location information 119 5.7.2 Message trustworthiness 121 5.8 Towards Deployment of Security and PET for VC 122 5.8.1 Revisiting basic design choices 122 5.8.2 Future challenges 124 5.9 Conclusions 125 References 125 6 Security and Dependability in Train Control Systems 129 Mark Hartong, Rajni Goel and Duminda Wijesekera 6.1 Introduction 130 6.2 Traditional Train Control and Methods of Rail Operation 130 6.2.1 Verbal authority and mandatory directives 131 6.2.2 Signal indications 131 6.3 Limitations of Current Train Control Technologies 132 6.4 Positive Train Control 132 6.4.1 Functions 133 6.4.2 Architectures 134 6.4.3 US communication-based systems 135 6.5 System Security 138 6.5.1 The security threat 138 6.5.2 Attacks 139 6.5.3 Required security attributes 141 6.5.4 Analysis of requirements 142 6.6 Supplementary Requirements 144 6.6.1 Performance management 144 6.6.2 Configuration management 145 6.6.3 Accounting, fault, and security management 145 6.7 Summary 146 References 146 7 Automotive Standardization of Vehicle Networks 149 Tom Schaffnit 7.1 General Concepts 149 7.1.1 Vehicle-to-Vehicle communications 150 7.1.2 Vehicle-to-Infrastructure communications 150 7.2 Interoperability 151 7.2.1 Regional requirements and differences 152 7.2.2 Necessity of standards 153 7.2.3 Insufficiency of standards 154 7.3 Wireless Protocols and Standardization Activities 154 7.3.1 OSI seven-layer protocol model 154 7.3.2 Standards activities relative to protocol layers 155 7.3.3 Cooperation required among different standards 156 7.4 Regional Standards Development Progress 157 7.4.1 North America 157 7.4.2 Europe 160 7.4.3 Japan 162 7.5 Global Standardization 163 7.5.1 Global standards development organizations and mechanisms 164 7.5.2 Allowances for regional differences 167 References 168 8 Standardization of Vehicle-to-Infrastructure Communication 171 Karine Gosse, David Bateman, Christophe Janneteau, Mohamed Kamoun, Mounir Kellil, Pierre Roux, Alexis Olivereau, Jean-Noël Patillon, Alexandru Petrescu, and Sheng Yang 8.1 Introduction 172 8.2 Overview of Standards and Consortia Providing Vehicle-to-Infrastructure Communication Solutions 173 8.2.1 Spectrum 173 8.2.2 Standards 174 8.3 Radio Access Standards for V2I Communications 178 8.3.1 IEEE 802.11p 178 8.3.2 Applicability of generic wide area radio access standards to Vehicle-to-Infrastructure (V2I)communications . . 181 8.4 Networking Standards forV2I Communications 185 8.4.1 Non-IP networking technologies for critical messaging 185 8.4.2 IP-based vehicular networking 186 8.5 Summary 198 References 198 9 Simulating Cooperative Vehicle-to-Infrastructure Systems: A Multi-Aspect Assessment Tool Suite 203 Gerdien Klunder, Isabel Wilmink and Bart van Arem 9.1 Introduction on Design and Evaluation of Cooperative Systems 204 9.2 Design Problems for Cooperative Systems 204 9.3 SUMMITS Tool Suite and Multi-Aspect Assessment 205 9.3.1 Multi-aspect assessment 205 9.3.2 The SUMMITS Tool Suite 206 9.3.3 Some practical aspects of the approach 207 9.4 Integrated Full-Range Speed Assistant 208 9.4.1 Modes and functions 208 9.4.2 Scenarios 209 9.4.3 IRSA controllers 209 9.5 System Robustness – Simulations with a Multi-Agent Real-Time Simulator 212 9.5.1 Aims of the simulation 212 9.5.2 Implementation of IRSA in MARS 213 9.5.3 Evaluation of robustness of  IRSA CACC controllers 215 9.5.4 Conclusions on the simulations with MARS 217 9.6 Traffic Flow Impacts–Simulations in the ITS Modeller 218 9.6.1 Aims of the simulations 218 9.6.2 Implementation of IRSA in the ITS modeller 219 9.6.3 Results for the ‘approaching a traffic jam’ scenario 221 9.6.4 Results for the ‘approaching a reduced speed limit zone’ scenario 222 9.6.5 Results for the ‘leaving the head of a queue’ scenario 223 9.6.6 Conclusions on the ITS modeller simulation results 224 9.7 Conclusions 224 References 225 10 System Design and Proof-of-Concept Implementation of Seamless Handover Support for Communication-Based Train Control 227 Marc Emmelmann 10.1 Introduction 228 10.2 Fast Handover for CBTC using Wi-Fi  229 10.2.1 Requirements of Communications-Based Train Control for fast handover support 229 10.2.2 Taxonomy of handover phases 230 10.2.3 IEEE 802.11 fast handover support 231 10.2.4 Challenges of CBTC for Wi-Fi-based fast handover support 239 10.3 System Concept and Design 239 10.3.1 System architecture 240 10.3.2 MAC scheme 241 10.3.3 Predictive fast handover 242 10.4 Implementation 243 10.4.1 Methodology 243 10.4.2 Proof-of-concept demonstrator 244 10.5 Performance Evaluation 245 10.5.1 Metric design 245 10.5.2 Empirical evaluation 247 10.6 Conclusion 253 References . . . . 253 11 New Technological Paradigms 257 Bernd Bochow 11.1 Evolution and Convergence of Vehicular Networks 258 11.2 Future Challenges 259 11.2.1 Handling network growth 259 11.2.2 Managing resources in adhoc scenarios 260 11.2.3 Enabling interworking, integration and convergence 261 11.2.4 Providing integrated on-board and vicinity communications 261 11.3 New Paradigms 262 11.3.1 RF LoS obstruction due to other vehicles in close vicinity 263 11.3.2 Increased demand for accuracy of positioning and time synchronization 263 11.3.3 Optimization of message RTT 263 11.3.4 Gaining and distributing knowledge on topology and resource availability in temporal, spatial and spectral dimensions 264 11.3.5 Efficient collaboration and cooperation in resource utilization 264 11.4 Outlook: the Role of Vehicular Networks in the Future Internet 265 References 267 Further Reading 271 Acronyms and Abbreviations 275 Subject Index 285


Best Sellers


Product Details
  • ISBN-13: 9780470741542
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 252 mm
  • No of Pages: 314
  • Returnable: N
  • Sub Title: Automotive Applications and Beyond
  • Width: 175 mm
  • ISBN-10: 0470741546
  • Publisher Date: 16 Apr 2010
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 23 mm
  • Weight: 680 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Vehicular Networking: Automotive Applications and Beyond
John Wiley & Sons Inc -
Vehicular Networking: Automotive Applications and Beyond
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Vehicular Networking: Automotive Applications and Beyond

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!