Theory and Statistical Applications of Stochastic Processes
Home > Mathematics and Science Textbooks > Mathematics > Applied mathematics > Stochastics > Theory and Statistical Applications of Stochastic Processes
Theory and Statistical Applications of Stochastic Processes

Theory and Statistical Applications of Stochastic Processes

|
     0     
5
4
3
2
1




International Edition


About the Book

This book is concerned with the theory of stochastic processes and the theoretical aspects of statistics for stochastic processes. It combines classic topics such as construction of stochastic processes, associated filtrations, processes with independent increments, Gaussian processes, martingales, Markov properties, continuity and related properties of trajectories with contemporary subjects: integration with respect to Gaussian processes, It? integration, stochastic analysis, stochastic differential equations, fractional Brownian motion and parameter estimation in diffusion models.

Table of Contents:
Preface xi Introduction xiii Part 1 Theory of Stochastic Processes 1 Chapter 1 Stochastic Processes General Properties. Trajectories, Finite-dimensional Distributions 3 1.1 Definition of a stochastic process 3 1.2 Trajectories of a stochastic process Some examples of stochastic processes 5 1.2.1 Definition of trajectory and some examples 5 1.2.2 Trajectory of a stochastic process as a random element.8 1.3 Finite-dimensional distributions of stochastic processes: consistency conditions.10 1.3.1 Definition and properties of finite-dimensional distributions 10 1.3.2 Consistency conditions.11 1.3.3 Cylinder sets and generated σ-algebra 13 1.3.4 Kolmogorov theorem on the construction of a stochastic process by the family of probability distributions 15 1.4 Properties of σ-algebra generated by cylinder sets. The notion of σ-algebra generated by a stochastic process 19 Chapter 2 Stochastic Processes with Independent Increments 21 2.1 Existence of processes with independent increments in terms of incremental characteristic functions 21 2.2 Wiener process 24 2.2.1 One-dimensional Wiener process 24 2.2.2 Independent stochastic processes Multidimensional Wiener process 24 2.3 Poisson process 27 2.3.1 Poisson process defined via the existence theorem 27 2.3.2 Poisson process defined via the distributions of the increments 28 2.3.3 Poisson process as a renewal process 30 2.4 Compound Poisson process 33 2.5 Lévy processes 34 2.5.1 Wiener process with a drift 36 2.5.2 Compound Poisson process as a Lévy process 36 2.5.3 Sum of a Wiener process with a drift and a Poisson process 36 2.5.4 Gamma process 37 2.5.5 Stable Lévy motion37 2.5.6 Stable Lévy subordinator with stability parameter α ∈ (0, 1) 38 Chapter 3 Gaussian Processes Integration with Respect to Gaussian Processes 39 3.1 Gaussian vectors 39 3.2 Theorem of Gaussian representation (theorem on normal correlation) 42 3.3 Gaussian processes. 44 3.4 Examples of Gaussian processes 46 3.4.1 Wiener process as an example of a Gaussian process 46 3.4.2 Fractional Brownian motion.48 3.4.3 Sub-fractional and bi-fractional Brownian motion 50 3.4.4 Brownian bridge 50 3.4.5 Ornstein–Uhlenbeck process 51 3.5 Integration of non-random functions with respect to Gaussian processes 52 3.5.1 General approach 52 3.5.2 Integration of non-random functions with respect to the Wiener process 54 3.5.3 Integration w.r.t the fractional Brownian motion 57 3.6 Two-sided Wiener process and fractional Brownian motion: Mandelbrot–van Ness representation of fractional Brownian motion 60 3.7 Representation of fractional Brownian motion as the Wiener integral on the compact integral 63 Chapter 4 Construction, Properties and Some Functionals of the Wiener Process and Fractional Brownian Motion 67 4.1 Construction of a Wiener process on the interval [0, 1] 67 4.2 Construction of a Wiener process on R+ 72 4.3 Nowhere differentiability of the trajectories of a Wiener process 74 4.4 Power variation of the Wiener process and of the fractional Brownian motion77 4.4.1 Ergodic theorem for power variations 77 4.5 Self-similar stochastic processes 79 4.5.1 Definition of self-similarity and some examples 79 4.5.2 Power variations of self-similar processes on finite intervals.80 Chapter 5 Martingales and Related Processes 85 5.1 Notion of stochastic basis with filtration 85 5.2 Notion of (sub-, super-) martingale: elementary properties 86 5.3 Examples of (sub-, super-) martingales 87 5.4 Markov moments and stopping times 90 5.5 Martingales and related processes with discrete time 96 5.5.1 Upcrossings of the interval and existence of the limit of submartingale 96 5.5.2 Examples of martingales having a limit and of uniformly and non-uniformly integrable martingales 102 5.5.3 Lévy convergence theorem 104 5.5.4 Optional stopping 105 5.5.5 Maximal inequalities for (sub-, super-) martingales 108 5.5.6 Doob decomposition for the integrable processes with discrete time 111 5.5.7 Quadratic variation and quadratic characteristics: Burkholder–Davis–Gundy inequalities 113 5.5.8 Change of probability measure and Girsanov theorem for discrete-time processes 116 5.5.9 Strong law of large numbers for martingales with discrete time 120 5.6 Lévy martingale stopped 126 5.7 Martingales with continuous time 127 Chapter 6 Regularity of Trajectories of Stochastic Processes 131 6.1 Continuity in probability and in L2(Ω,F, P) 131 6.2 Modification of stochastic processes: stochastically equivalent and indistinguishable processes 133 6.3 Separable stochastic processes: existence of separable modification 135 6.4 Conditions of D-regularity and absence of the discontinuities of the second kind for stochastic processes 138 6.4.1 Skorokhod conditions of D-regularity in terms of three-dimensional distributions 138 6.4.2 Conditions of absence of the discontinuities of the second kind formulated in terms of conditional probabilities of large increments 144 6.5 Conditions of continuity of trajectories of stochastic processes 148 6.5.1 Kolmogorov conditions of continuity in terms of two-dimensional distributions 148 6.5.2 Hölder continuity of stochastic processes: a sufficient condition 152 6.5.3 Conditions of continuity in terms of conditional probabilities 154 Chapter 7 Markov and Diffusion Processes 157 7.1 Markov property 157 7.2 Examples of Markov processes 163 7.2.1 Discrete-time Markov chain 163 7.2.2 Continuous-time Markov chain 165 7.2.3 Process with independent increments 168 7.3 Semigroup resolvent operator and generator related to the homogeneous Markov process 168 7.3.1 Semigroup related to Markov process 168 7.3.2 Resolvent operator and resolvent equation 169 7.3.3 Generator of a semigroup.171 7.4 Definition and basic properties of diffusion process 175 7.5 Homogeneous diffusion process Wiener process as a diffusion process 179 7.6 Kolmogorov equations for diffusions 181 Chapter 8 Stochastic Integration 187 8.1 Motivation..187 8.2 Definition of Itô integral 189 8.2.1 Itô integral of Wiener process 195 8.3 Continuity of Itô integral 197 8.4 Extended Itô integral 199 8.5 Itô processes and Itô formula 203 8.6 Multivariate stochastic calculus 212 8.7 Maximal inequalities for Itô martingales 215 8.7.1 Strong law of large numbers for Itô local martingales 218 8.8 Lévy martingale characterization of Wiener process 220 8.9 Girsanov theorem 223 8.10 Itô representation 228 Chapter 9 Stochastic Differential Equations.233 9.1 Definition, solvability conditions, examples 233 9.1.1 Existence and uniqueness of solution 234 9.1.2 Some special stochastic differential equations 238 9.2 Properties of solutions to stochastic differential equations 241 9.3 Continuous dependence of solutions on coefficients 245 9.4 Weak solutions to stochastic differential equations. 247 9.5 Solutions to SDEs as diffusion processe 249 9.6 Viability, comparison and positivity of solutions to stochastic differential equations 252 9.6.1 Comparison theorem for one-dimensional projections of stochastic differential equations 257 9.6.2 Non-negativity of solutions to stochastic differential equations 258 9.7 Feynman–Kac formula 258 9.8 Diffusion model of financial markets 260 9.8.1 Admissible portfolios, arbitrage and equivalent martingale measure 263 9.8.2 Contingent claims, pricing and hedging 266 Part 2 Statistics of Stochastic Processes 271 Chapter 10 Parameter Estimation 273 10.1 Drift and diffusion parameter estimation in the linear regression model with discrete time 273 10.1.1 Drift estimation in the linear regression model with discrete time in the case when the initial value is known 274 10.1.2 Drift estimation in the case when the initial value is unknown 277 10.2 Estimation of the diffusion coefficient in a linear regression model with discrete time 277 10.3 Drift and diffusion parameter estimation in the linear model with continuous time and the Wiener noise 278 10.3.1 Drift parameter estimation 279 10.3.2 Diffusion parameter estimation 280 10.4 Parameter estimation in linear models with fractional Brownian motion 281 10.4.1 Estimation of Hurst index 281 10.4.2 Estimation of the diffusion parameter 283 10.5 Drift parameter estimation 284 10.6 Drift parameter estimation in the simplest autoregressive model 285 10.7 Drift parameters estimation in the homogeneous diffusion model 289 Chapter 11 Filtering Problem Kalman-Bucy Filter 293 11.1 General setting 293 11.2 Auxiliary properties of the non-observable process 294 11.3 What is an optimal filter 295 11.4 Representation of an optimal filter via an integral equation with respect to an observable process 296 11.5 Integral Wiener-Hopf equation 299 Appendices 311 Appendix 1 313 Appendix 2 329 Bibliography 363 Index 369


Best Sellers


Product Details
  • ISBN-13: 9781786300508
  • Publisher: ISTE Ltd and John Wiley & Sons Inc
  • Publisher Imprint: ISTE Ltd and John Wiley & Sons Inc
  • Height: 239 mm
  • No of Pages: 400
  • Returnable: N
  • Weight: 726 gr
  • ISBN-10: 1786300508
  • Publisher Date: 14 Nov 2017
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 25 mm
  • Width: 163 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Theory and Statistical Applications of Stochastic Processes
ISTE Ltd and John Wiley & Sons Inc -
Theory and Statistical Applications of Stochastic Processes
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Theory and Statistical Applications of Stochastic Processes

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!