Spectral Methods Using Multivariate Polynomials On The Unit Ball
Home > Mathematics and Science Textbooks > Mathematics > Calculus and mathematical analysis > Numerical analysis > Spectral Methods Using Multivariate Polynomials On The Unit Ball
Spectral Methods Using Multivariate Polynomials On The Unit Ball

Spectral Methods Using Multivariate Polynomials On The Unit Ball

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

Spectral Methods Using Multivariate Polynomials on the Unit Ball is a research level text on a numerical method for the solution of partial differential equations. The authors introduce, illustrate with examples, and analyze 'spectral methods' that are based on multivariate polynomial approximations. The method presented is an alternative to finite element and difference methods for regions that are diffeomorphic to the unit disk, in two dimensions, and the unit ball, in three dimensions. The speed of convergence of spectral methods is usually much higher than that of finite element or finite difference methods. Features Introduces the use of multivariate polynomials for the construction and analysis of spectral methods for linear and nonlinear boundary value problems Suitable for researchers and students in numerical analysis of PDEs, along with anyone interested in applying this method to a particular physical problem One of the few texts to address this area using multivariate orthogonal polynomials, rather than tensor products of univariate polynomials.

Table of Contents:
1. Introduction. 1.1 An illustrative example. 1.2 Transformation of problem. 1.3 Function spaces. 1.4 Variational reformulation. 1.5 A spectral method. 1.6 Numerical example. 1.7 Exterior problems. 2 Multivariate Polynomials. 2.1 Multivariate polynomials. 2.2 Triple recursion relation. 2.3 Rapid evaluation of orthonormal polynomials. 2.4 A Clenshaw algorithm. 2.5 Best approximation. 2.6 Quadrature over the unit disk, unit ball, and unit sphere. 2.7 Least squares approximation. 2.8 Matlab programs and numerical examples. 3 Creating Transformations of Regions. 3.1 Constructions of □ ф. 3.2 An integration-based mapping formula. 3.3 Iteration methods. 3.4 Mapping in three dimensions. 4 Galerkin's method for the Dirichlet and Neumann Problems. 4.1 Implementation. 4.2 Convergence analysis. 4.3 The Neumann problem. 4.4 Convergence analysis for the Neumann problem. 4.5 The Neumann problem with = 0. 4.6 De ning surface normals and Jacobian for a general surface. 5 Eigenvalue Problems. 5.1 Numerical solution - Dirichlet problem. 5.2 Numerical examples - Dirichlet problem. 5.3 Convergence analysis - Dirichlet problem. 5.4 Numerical solution - Neumann problem. 6 Parabolic problems. 6.1 Reformulation and numerical approximation. 6.2 Numerical examples. 6.3 Convergence analysis. 7 Nonlinear Equations. 7.2 Numerical examples. 7.3 Convergence analysis. 7.4 Neumann boundary value problem. 8 Nonlinear Neumann Boundary Value Problem. 8.1 The numerical method. 8.2 Numerical examples. 8.3 Error analysis. 8.4 An existence theorem for the three dimensional Stefan--Boltzmann problem. 9 The biharmonic equation. 9.1 The weak reformulation. 9.2 The numerical method. 9.3 Numerical Examples. 9.4 The eigenvalue problem. 10 Integral Equations. 10.1 Galerkin's numerical method. 10.2 Error analysis. 10.3 An integral equation of the rst kind


Best Sellers


Product Details
  • ISBN-13: 9781000725865
  • Publisher: Taylor & Francis Ltd
  • Publisher Imprint: Chapman & Hall/CRC
  • Language: English
  • ISBN-10: 1000725863
  • Publisher Date: 27 Nov 2019
  • Binding: Digital (delivered electronically)


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Spectral Methods Using Multivariate Polynomials On The Unit Ball
Taylor & Francis Ltd -
Spectral Methods Using Multivariate Polynomials On The Unit Ball
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Spectral Methods Using Multivariate Polynomials On The Unit Ball

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!