Space Flight Dynamics
Home > Science, Technology & Agriculture > Transport technology and trades > Aerospace and aviation technology > Space Flight Dynamics
Space Flight Dynamics

Space Flight Dynamics

|
     0     
5
4
3
2
1




International Edition


About the Book

Thorough coverage of space flight topics with self-contained chapters serving a variety of courses in orbital mechanics, spacecraft dynamics, and astronautics This concise yet comprehensive book on space flight dynamics addresses all phases of a space mission: getting to space (launch trajectories), satellite motion in space (orbital motion, orbit transfers, attitude dynamics), and returning from space (entry flight mechanics). It focuses on orbital mechanics with emphasis on two-body motion, orbit determination, and orbital maneuvers with applications in Earth-centered missions and interplanetary missions. Space Flight Dynamics presents wide-ranging information on a host of topics not always covered in competing books. It discusses relative motion, entry flight mechanics, low-thrust transfers, rocket propulsion fundamentals, attitude dynamics, and attitude control. The book is filled with illustrated concepts and real-world examples drawn from the space industry. Additionally, the book includes a “computational toolbox” composed of MATLAB M-files for performing space mission analysis. Key features: Provides practical, real-world examples illustrating key concepts throughout the book Accompanied by a website containing MATLAB M-files for conducting space mission analysis Presents numerous space flight topics absent in competing titles Space Flight Dynamics is a welcome addition to the field, ideally suited for upper-level undergraduate and graduate students studying aerospace engineering.

Table of Contents:
Preface xi 1 Historical Overview 1 1.1 Introduction 1 1.2 Early Modern Period 1 1.3 Early Twentieth Century 3 1.4 Space Age 4 2 Two-Body Orbital Mechanics 7 2.1 Introduction 7 2.2 Two-Body Problem 7 2.3 Constants of Motion 11 2.3.1 Conservation of Angular Momentum 11 2.3.2 Conservation of Energy 13 2.4 Conic Sections 15 2.4.1 Trajectory Equation 15 2.4.2 Eccentricity Vector 20 2.4.3 Energy and Semimajor Axis 21 2.5 Elliptical Orbit 23 2.5.1 Ellipse Geometry 24 2.5.2 Flight-Path Angle and Velocity Components 24 2.5.3 Period of an Elliptical Orbit 31 2.5.4 Circular Orbit 32 2.5.5 Geocentric Orbits 33 2.6 Parabolic Trajectory 38 2.7 Hyperbolic Trajectory 42 2.8 Summary 46 Further Reading 46 Problems 47 3 Orbit Determination 55 3.1 Introduction 55 3.2 Coordinate Systems 55 3.3 Classical Orbital Elements 57 3.4 Transforming Cartesian Coordinates to Orbital Elements 60 3.5 Transforming Orbital Elements to Cartesian Coordinates 66 3.5.1 Coordinate Transformations 68 3.6 Ground Tracks 75 3.7 Orbit Determination from One Ground-Based Observation 79 3.7.1 Topocentric-Horizon Coordinate System 79 3.7.2 Inertial Position Vector 81 3.7.3 Inertial Velocity Vector 82 3.7.4 Ellipsoidal Earth Model 85 3.8 Orbit Determination from Three Position Vectors 88 3.9 Survey of Orbit-Determination Methods 95 3.9.1 Orbit Determination Using Angles-Only Measurements 95 3.9.2 Orbit Determination Using Three Position Vectors 97 3.9.3 Orbit Determination from Two Position Vectors and Time 97 3.9.4 Statistical Orbit Determination 98 3.10 Summary 99 References 100 Problems 100 4 Time of Flight 107 4.1 Introduction 107 4.2 Kepler’s Equation 107 4.2.1 Time of Flight Using Geometric Methods 107 4.2.2 Time of Flight Using Analytical Methods 108 4.2.3 Relating Eccentric and True Anomalies 112 4.3 Parabolic and Hyperbolic Time of Flight 117 4.3.1 Parabolic Trajectory Flight Time 117 4.3.2 Hyperbolic Trajectory Flight Time 119 4.4 Kepler’s Problem 123 4.5 Orbit Propagation Using Lagrangian Coefficients 127 4.6 Lambert’s Problem 135 4.7 Summary 145 References 145 Problems 146 5 Non-Keplerian Motion 151 5.1 Introduction 151 5.2 Special Perturbation Methods 152 5.2.1 Non-Spherical Central Body 153 5.3 General Perturbation Methods 159 5.3.1 Lagrange’s Variation of Parameters 160 5.3.2 Secular Perturbations due to Oblateness ( J2) 164 5.4 Gauss’ Variation of Parameters 174 5.5 Perturbation Accelerations for Earth Satellites 180 5.5.1 Non-Spherical Earth 180 5.5.2 Third-Body Gravity 182 5.5.3 Atmospheric Drag 185 5.5.4 Solar Radiation Pressure 189 5.6 Circular Restricted Three-Body Problem 192 5.6.1 Jacobi’s Integral 194 5.6.2 Lagrangian Points 195 5.7 Summary 203 References 203 Problems 204 6 Rocket Performance 213 6.1 Introduction 213 6.2 Rocket Propulsion Fundamentals 213 6.3 The Rocket Equation 214 6.4 Launch Trajectories 219 6.5 Staging 226 6.6 Launch Vehicle Performance 231 6.7 Impulsive Maneuvers 233 6.8 Summary 234 References 235 Problems 235 7 Impulsive Orbital Maneuvers 241 7.1 Introduction 241 7.2 Orbit Shaping 242 7.3 Hohmann Transfer 245 7.3.1 Coplanar Transfer with Tangential Impulses 248 7.4 General Coplanar Transfer 252 7.5 Inclination-Change Maneuver 256 7.6 Three-Dimensional Orbit Transfer 259 7.7 Summary 264 References 264 Problems 264 8 Relative Motion and Orbital Rendezvous 275 8.1 Introduction 275 8.2 Linear Clohessy–Wiltshire Equations 275 8.3 Homogeneous Solution of the Clohessy–Wiltshire Equations 280 8.4 Orbital Rendezvous Using the Clohessy–Wiltshire Equations 288 8.5 Summary 298 References 298 Problems 298 9 Low-Thrust Transfers 303 9.1 Introduction 303 9.2 Electric Propulsion Fundamentals 304 9.3 Coplanar Circle-to-Circle Transfer 306 9.3.1 Comparing Impulsive and Low-Thrust Transfers 313 9.4 Coplanar Transfer with Earth-Shadow Effects 315 9.5 Inclination-Change Maneuver 318 9.6 Transfer Between Inclined Circular Orbits 320 9.7 Combined Chemical-Electric Propulsion Transfer 322 9.8 Low-Thrust Transfer Issues 328 9.9 Summary 329 References 329 Problems 330 10 Interplanetary Trajectories 335 10.1 Introduction 335 10.2 Patched-Conic Method 338 10.2.1 Sphere of Influence 339 10.2.2 Coplanar Heliocentric Transfers between Circular Orbits 341 10.3 Phase Angle at Departure 351 10.4 Planetary Arrival 355 10.5 Heliocentric Transfers Using an Accurate Ephemeris 359 10.5.1 Pork-Chop Plots 367 10.5.2 Julian Date 368 10.6 Gravity Assists 370 10.7 Summary 378 References 379 Problems 379 11 Atmospheric Entry 385 11.1 Introduction 385 11.2 Entry Flight Mechanics 386 11.3 Ballistic Entry 390 11.4 Gliding Entry 396 11.5 Skip Entry 404 11.6 Entry Heating 412 11.7 Space Shuttle Entry 418 11.8 Summary 422 References 423 Problems 423 12 Attitude Dynamics 429 12.1 Introduction 429 12.2 Rigid Body Dynamics 430 12.2.1 Angular Momentum of a Rigid Body 432 12.2.2 Principal Axes 438 12.2.3 Rotational Kinetic Energy 439 12.2.4 Euler’s Moment Equations 441 12.3 Torque-Free Motion 442 12.3.1 Euler Angle Rates 447 12.4 Stability and Flexible Bodies 457 12.4.1 Spin Stability about the Principal Axes 457 12.4.2 Stability of Flexible Bodies 459 12.5 Spin Stabilization 464 12.5.1 Dual-Spin Stabilization 466 12.6 Disturbance Torques 467 12.6.1 Gravity-Gradient torque 467 12.6.2 Aerodynamic Torque 468 12.6.3 Solar Radiation Pressure Torque 469 12.6.4 Magnetic Torque 470 12.7 Gravity-Gradient Stabilization 470 12.8 Summary 476 References 477 Problems 477 13 Attitude Control 485 13.1 Introduction 485 13.2 Feedback Control Systems 485 13.2.1 Transfer Functions 486 13.2.2 Closed-Loop Control Systems 489 13.2.3 Second-Order System Response 490 13.3 Mechanisms for Attitude Control 497 13.3.1 Reaction Jets 497 13.3.2 Momentum-Exchange Devices 497 13.3.3 Magnetic Torquers 501 13.4 Attitude Maneuvers Using Reaction Wheels 501 13.5 Attitude Maneuvers Using Reaction Jets 513 13.5.1 Phase-Plane Analysis of Satellite Attitude Dynamics 513 13.5.2 Reaction Jet Control Law 518 13.6 Nutation Control Using Reaction Jets 527 13.7 Summary 534 References 535 Further Reading 535 Problems 535 Appendix A: Physical Constants 541 Appendix B: Review of Vectors 543 B.1 Introduction 543 B.2 Vectors 543 B.3 Vector Operations 544 B.3.1 Vector Addition 544 B.3.2 Cross Product 545 B.3.3 Dot Product 546 B.3.4 Scalar Triple Product 547 B.3.5 Vector Triple Product 547 Appendix C: Review of Particle Kinematics 549 C.1 Introduction 549 C.2 Cartesian Coordinates 549 C.3 Polar Coordinates 551 C.4 Normal-Tangential Coordinates 552 Index


Best Sellers


Product Details
  • ISBN-13: 9781119157823
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 246 mm
  • No of Pages: 592
  • Returnable: N
  • Weight: 1205 gr
  • ISBN-10: 111915782X
  • Publisher Date: 30 Mar 2018
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 36 mm
  • Width: 175 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Space Flight Dynamics
John Wiley & Sons Inc -
Space Flight Dynamics
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Space Flight Dynamics

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!