Smoothness Priors Analysis of Time Series
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Smoothness Priors Analysis of Time Series: An Introduction
Smoothness Priors Analysis of Time Series: An Introduction

Smoothness Priors Analysis of Time Series: An Introduction

|
     0     
5
4
3
2
1




International Edition


About the Book

Smoothness Priors Analysis of Time Series addresses some of the problems of modeling stationary and nonstationary time series primarily from a Bayesian stochastic regression "smoothness priors" state space point of view. Prior distributions on model coefficients are parametrized by hyperparameters. Maximizing the likelihood of a small number of hyperparameters permits the robust modeling of a time series with relatively complex structure and a very large number of implicitly inferred parameters. The critical statistical ideas in smoothness priors are the likelihood of the Bayesian model and the use of likelihood as a measure of the goodness of fit of the model. The emphasis is on a general state space approach in which the recursive conditional distributions for prediction, filtering, and smoothing are realized using a variety of nonstandard methods including numerical integration, a Gaussian mixture distribution-two filter smoothing formula, and a Monte Carlo "particle-path tracing" method in which the distributions are approximated by many realizations. The methods are applicable for modeling time series with complex structures.

Table of Contents:
1 Introduction.- 1.1 Background.- 1.2 What is in the Book.- 1.3 Time Series Examples.- 2 Modeling Concepts and Methods.- 2.1 Akaike’s AIC: Evaluating Parametric Models.- 2.2 Least Squares Regression by Householder Transformation.- 2.3 Maximum Likelihood Estimation and an Optimization Algorithm.- 2.4 State Space Methods.- 3 The Smoothness Priors Concept.- 3.1 Introduction.- 3.2 Background, History and Related Work.- 3.3 Smoothness Priors Bayesian Modeling.- 4 Scalar Least Squares Modeling.- 4.1 Estimating a Trend.- 4.2 The Long AR Model.- 4.3 Transfer Function Estimation.- 5 Linear Gaussian State Space Modeling.- 5.1 Introduction.- 5.2 Standard State Space Modeling.- 5.3 Some State Space Models.- 5.4 Modeling With Missing Observations.- 5.5 Unequally Spaced Observations.- 5.6 An Information Square-Root Filter/Smoother.- 6 Contents General State Space Modeling.- 6.1 Introduction.- 6.2 The General State Space Model.- 6.3 Numerical Synthesis of the Algorithms.- 6.4 The Gaussian Sum-Two Filter Formula Approximation.- 6.5 A Monte Carlo Filtering and Smoothing Method.- 6.6 A Derivation of the Kalman filter.- 7 Applications of Linear Gaussian State Space Modeling.- 7.1 AR Time Series Modeling.- 7.2 Kullback-Leibler Computations.- 7.3 Smoothing Unequally Spaced Data.- 7.4 A Signal Extraction Problem.- 8 Modeling Trends.- 8.1 State Space Trend Models.- 8.2 State Space Estimation of Smooth Trend.- 8.3 Multiple Time Series Modeling: The Common Trend Plus Individual Component AR Model.- 8.4 Modeling Trends with Discontinuities.- 9 Seasonal Adjustment.- 9.1 Introduction.- 9.2 A State Space Seasonal Adjustment Model.- 9.3 Smooth Seasonal Adjustment Examples.- 9.4 Non-Gaussian Seasonal Adjustment.- 9.5 Modeling Outliers.- 9.6 Legends.- 10 Estimation of Time Varying Variance.- 10.1Introduction and Background.- 10.2 Modeling Time-Varying Variance.- 10.3 The Seismic Data.- 10.4 Smoothing the Periodogram.- 10.5 The Maximum Daily Temperature Data.- 11 Modeling Scalar Nonstationary Covariance Time Series.- 11.1 Introduction.- 11.2 A Time Varying AR Coefficient Model.- 11.3 A State Space Model.- 11.4 PARCOR Time Varying AR Modeling.- 11.5 Examples.- 12 Modeling Multivariate Nonstationary Covariance Time Series.- 12.1 Introduction.- 12.2 The Instantaneous Response-Orthogonal Innovations Model.- 12.3 State Space Modeling.- 12.4 Time Varying PARCOR VAR Modeling.- 12.5 Examples.- 13 Modeling Inhomogeneous Discrete Processes.- 13.1 Nonstationary Discrete Process.- 13.2 Nonstationary Binary Processes.- 13.3 Nonstationary Poisson Process.- 14 Quasi-Periodic Process Modeling.- 14.1 The Quasi-periodic Model.- 14.2 The Wolfer Sunspot Data.- 14.3 The Canadian Lynx Data.- 14.4 Other Examples.- 14.5 Predictive Properties of Quasi-periodic Process Modeling.- 15 Nonlinear Smoothing.- 15.1 Introduction.- 15.2 State Estimation.- 15.3 A One Dimensional Problem.- 15.4 A Two Dimensional Problem.- 16 Other Applications.- 16.1 A Large Scale Decomposition Problem.- 16.2 Markov State Classification.- 16.3 SPVAR Modeling for Spectrum Estimation.- References.- Author Index.


Best Sellers


Product Details
  • ISBN-13: 9780387948195
  • Publisher: Springer-Verlag New York Inc.
  • Publisher Imprint: Springer-Verlag New York Inc.
  • Height: 235 mm
  • No of Pages: 280
  • Returnable: N
  • Sub Title: An Introduction
  • Width: 155 mm
  • ISBN-10: 0387948198
  • Publisher Date: 09 Aug 1996
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Spine Width: 23 mm
  • Weight: 444 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Smoothness Priors Analysis of Time Series: An Introduction
Springer-Verlag New York Inc. -
Smoothness Priors Analysis of Time Series: An Introduction
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Smoothness Priors Analysis of Time Series: An Introduction

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!