Relativistic Quantum Mechanics and Introduction to Field Theory
Home > Mathematics and Science Textbooks > Physics > Quantum physics > Relativistic Quantum Mechanics and Introduction to Field Theory
Relativistic Quantum Mechanics and Introduction to Field Theory

Relativistic Quantum Mechanics and Introduction to Field Theory

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

This advanced textbook supplies graduate students with a primer in quantum theory. A variety of processes are discussed with concepts such as potentials, classical current distributions, prescribed external fields dealt with in the framework of relativistic quantum mechanics. Then, in an introduction to field theory, the author emphasizes the deduction of the said potentials or currents. A modern presentation of the subject together with many exercises, unique in its unusual underlying concept of combining relativistic quantum mechanics with basic quantum field theory.

Table of Contents:
1. Relativistic Transformations. The Lorentz Group.- 1.1 Rotations, and Space and Time Reversal for Particles with Spin.- 1.2 Galilean Transformations.- 1.3 Lorentz Transformations. Normal Parameters.- 1.4 Minkowski Space. The Full Lorentz Group.- 1.5 The Lorentz Group.- 1.6 Geometry of Minkowski Space.- 1.7 Transformation Properties of Physical Quantities Under the Lorentz Group.- 1.8 Covariant Form of the Maxwell Equations.- 1.9 Minkowski Space: Metric, Conventions.- 2. The Klein-Gordon Equation. Relativistic Equation for Spinless Particles.- 2.1 The Klein-Gordon Equation. Generalities.- 2.2 Wave Equation for Free Spinless Particles.- 2.3 Plane Waves. Current. Scalar Product.- 2.4 Interaction with the Classical Electromagnetic Field. Gauge Invariance.- 2.5 Particle in a Coulomb Field.- 3. Spin 1/2 Particles.- 3.1 The Dirac Equation.- 3.2 Invariance Properties of the Dirac Equation.- 3.2.1 Rotations.- 3.2.2 Boosts.- 3.2.3 Parity.- 3.2.4 Time Reversal.- 3.3 Density of Particles. Current. Scalar Product.- 3.4 Minimal Replacement. Gauge Invariance. Large and Small Components: Nonrelativistic Limit of the Dirac Equation...- 3.5 Plane Waves. States with Weil-Defined Spin.- 3.6 Radial Form of the Dirac Equation. Free-Particle Solutions.- 3.6.1 Radial Form of H.- 3.6.2 Free Particles.- 3.7 The Problem of Negative Energies in the Dirac Equation. The Dirac Sea. Hole Theory. Charge Conjugation.- 3.7.1 Negative Energies. The Dirac Sea. Holes.- 3.7.2 Charge Conjugation.- 3.8 Covariants and Projectors.- 3.8.1 Covariants.- 3.8.2 Projectors.- 3.9 Massless Spin 1/2 Particles.- 4. Dirac Particle in a Potential.- 4.1 Dirac Particle in a Spherical Well.- 4.2 Particle in a Coulomb Potential: Continuum States.- 4.3 Scattering States. Phase Shifts. Cross-sections. Wave Function at the Origin.- 4.3.1 Scattering States. Phase Shifts.- 4.3.2 Cross-sections.- 4.3.3 Wave Function at the Origin.- 4.4 Bound States in a Coulomb Potential.- 4.5 Semirelativistic Approximation: the Foldy-Wouthuysen Transformation.- 4.5.1 General Method.- 4.5.2 Electromagnetic Interactions.- 4.5.3 Free Particle.- 5. Massive Particles with Spin 1. Massless Spin 1 Particle: Photon Wave Functions. Particles with Higher Spins (3/2, 2,...).- 5.1 Particle with Spin 1 and Mass m ? 0.- 5.2 Particle with Spin 1 and Zero Mass: The Photon. Plane Waves. Photon Spin.- 5.2.1 Photon Wave Function. Gauge Fixing. Transformation Properties.- 5.2.2 Plane Waves. Helicity States.- 5.2.3 Field Variables as Wave Functions for the Photon. The Schwinger Gauge.- 5.3 Angular Momentum Eigenstates for the Photon. Vector Spherical Harmonics. Multipoles.- 5.3.1 General Useful Formulas.- 5.3.2 Multipoles.- 5.3.3 Photon Wave Functions with Well-Defined Angular Momentum.- 5.4 Particles with Higher Spins. Rarita-Schwinger and Bargmann-Wigner Equations. The Graviton.- 5.4.1 Rarita-Schwinger Equations.- 5.4.2 Bargmann-Wigner Equations.- 5.4.3 The Graviton.- 6. General Description of Relativistic States.- 6.1 Preliminaries.- 6.2 Relativistic One-Particle States: General Description.- 6.3 Relativistic States of Massive (m?0) Particles.- 6.4 Massless Particles.- 6.5 Many-Particle States. Creation-Wigner Equations.- 5.4.3 The Graviton.- 6. General Description of Relativistic States.- 6.1 Preliminaries.- 6.2 Relativistic One-Particle States: General Description.- 6.3 Relativistic States of Massive (m?0) Particles.- 6.4 Massless Particles.- 6.5 Many-Particle States. Creation-Annihilation Operators. Fock Space.- 6.6 Connection with the Wave Function Formalism.- 7. General Description of Relativistic Collisions: S Matrix, Cross-sections and Decay Rates. Partial Wave Analyses.- 7.1 Two-Particle States. Separation of the Centre of Mass Motion. States with Weil-Defined Angular Momentum.- 7.2 Kinematics of Two-Particle Collisions.- 7.3 The S Matrix. Scattering Amplitude. Nonrelativistic Limit.- 7.4 Cross-sections and Decay Rates. The Optical Theorem.- 7.5 Partial Wave Analysis and Phase Shifts. I. Spinless Elastic Scattering. Effective Range Expansion...- 7.5.1 Partial Wave Analysis.- 7.5.2 Effective Range Formalism.- 7.6 Partial Wave Analysis. II. Several Two-Body Channels.- 7.6.1 Multichannel Analysis.- 7.6.2 Effective Range Approximation.- 7.7 Partial Wave Analysis. III. Particles with Spin.- 7.7.1 Spin Analysis.- 7.7.2 Scattering of Spin 0 - Spin 1/2 Particles.- 7.8 Evaluation of the S Matrix.- 7.8.1 The S Matrix and the Interaction Picture.- 7.8.2 The S Matrix in the Lippmann-Schwinger Formalism..- 7.8.3 Scattering by Two Interactions.- 8. Quantization of the Electromagnetic Field. Interaction of Radiation with Matter.- 8.1 Normal, or Wick, Products.- 8.2 Quantization of the Electromagnetic Field (Coulomb Gauge). The Casimir Effect.- 8.2.1 Quantization of the Electromagnetic Field.- 8.2.2 Multipole Expansion.- 8.2.3 The Casimir Effect.- 8.3 Interaction of the Radiation with Slowly Moving Particles...- 8.3.1 Radiative Decays, and Absorption of Radiation.- 8.3.2 Low-Energy Compton Scattering.- 8.4 Bremsstrahlung.- 8.5 The Classical Limit. Coherent States.- 8.6 Uncertainty Relations for Field Variables.- 9. Quantum Fields: Spin 0, 1/2, 1. Covariant Quantization of the Electromagnetic Field.- 9.1 Generalities.- 9.2 Localization of Particles in Relativistic Quantum Mechanics..- 9.3 Retardation and Consistency.- 9.4 Quantization of Scalar Fields and of Massive Vector Fields...- 9.4.1 Second Quantization for Spinless Particles.- 9.4.2 Massive Vector Particles.- 9.5 Quantization of the Dirac Field. Weyl and Majorana Particles.- 9.6 Covariant Quantization of the Electromagnetic Field.- 9.6.1 The Gupta-Bleuler Space.- 9.6.2 Covariant Transformation.- 9.6.3 The Metric Operator Method.- 9.7 Time-Ordered Product. Propagators.- 9.8 Interactions in Quantum Field Theory. Lagrangian Formulation.- 9.8.1 Lagrangian Formalism for Fields.- 9.8.2 Interactions.- 9.9 Gauge Invariance in Quantum Electrodynamics.- 10. Interactions in Quantum Field Theory. Nonrelativistic Limit. Reduction to Equivalent Potential.- 10.1 Potentials Equivalent to Field-Theoretic Interactions. General Method.- 10.2 Equivalent Potential for Two Particles in Electromagnetic Interaction.- 10.2.1 Elastic Collision of Two Charged Particles in the Born Approximation.- 10.2.2 Nonrelativistic Limit.- 10.2.3 Relativistic Corrections. The Breit Term.- 10.3 Hydrogenlike Atoms: Hyperfine Structure. System with Two Electrons: the Helium Atom.- 10.3.1 Hydrogenlike Atoms.- 10.3.2 System With Two Electrons. The Helium Atom.- 10.4 Electron-Positron Collisions: Effective Potential. Positronium.- 10.4.1 Scattering Amplitude in the Born Approximation..- 10.4.2 Annihilation Channel.- 10.4.3 Positronium.- 10.5 Scalar and Pseudoscalar Interactions. The Yukawa Potential..- 10.6 Weak Neutral Currents. Parity Violation in Atoms.- 11. Relativistic Collisions in Field Theory. Feynman Rules. Decays.- 11.1 Electron-Positron Annihilation into Two Photons, and Pair Creation by Two-Photon Collisions.- 11.1.1 e+e- Annihilation into 2?.- 11.1.2 Creation of an e+e- Pair by Two Photons.- 11.2 Feynman Rules. Gauge Invariance.- 11.2.1 Feynman Rules for the Evaluation of Transition Amplitudes.- 11.2.2 Gauge Invariance.- 11.3 Polarized and Unpolarized Cross-sections. Sums Over Polarizations.- 11.4 Compton Scattering (Relativistic).- 11.5 Decay of Bound States.- 11.5.1 General Theory.- 11.5.2 Decays of Positronium.- 11.5.3 Decay of Muonium into e+e-. Decays of Quarkonium.- 12. Relativistic Interactions with Classical Sources.- 12.1 Interaction with a Fixed (Classical) Potential.- 12.1.1 Scattering by an External Field.- 12.1.2 Bremsstrahlung.- 12.2 Photon Emission by a Classical Source. The Bloch-Nordsieck Theorem. Classical Limit.- 12.2.1 Classical Radiation.- 12.2.2 Photon Emission by a Classical Current.- 12.2.3 Radiation of Coherent States.- 12.2.4 The Bloch-Nordsieck Theorem.- 12.3 Propagation of an Electron in a Classical Potential. The Proper-Time Method.- 12.3.1 Electron in a Coulomb Potential.- 12.3.2 The Proper-Time Method.- 12.3.3 Dirac Particle in a Constant Field, or in a Plane Wave.- Appendices.- A.1 Spherical Harmonics, Clebsch-Gordan Coefficients, Matrix Representations of the Rotation Group.- A.1.1 Spherical Harmonics.- A.1.2 Some Specific Values.- A.1.3 Multiplication Formulas.- A.1.4 Gegenbauer-like Formulas.- A.1.5 Spinor and Vector Spherical Harmonics.- A.1.6 Clebsch-#8212;Annihilation Operators. Fock Space.- 6.6 Connection with the Wave Function Formalism.- 7. General Description of Relativistic Collisions: S Matrix, Cross-sections and Decay Rates. Partial Wave Analyses.- 7.1 Two-Particle States. Separation of the Centre of Mass Motion. States with Weil-Defined Angular Momentum.- 7.2 Kinematics of Two-Particle Collisions.- 7.3 The S Matrix. Scattering Amplitude. Nonrelativistic Limit.- 7.4 Cross-sections and Decay Rates. The Optical Theorem.- 7.5 Partial Wave Analysis and Phase Shifts. I. Spinless Elastic Scattering. Effective Range Expansion...- 7.5.1 Partial Wave Analysis.- 7.5.2 Effective Range Formalism.- 7.6 Partial Wave Analysis. II. Several Two-Body Channels.- 7.6.1 Multichannel Analysis.- 7.6.2 Effective Range Approximation.- 7.7 Partial Wave Analysis. III. Particles with Spin.- 7.7.1 Spin Analysis.- 7.7.2 Scattering of Spin 0 - Spin 1/2 Particles.- 7.8 Evaluation of the S Matrix.- 7.8.1 The S Matrix and the Interaction Picture.- 7.8.2 The S Matrix in the Lippmann-Schwinger Formalism..- 7.8.3 Scattering by Two Interactions.- 8. Quantization of the Electromagnetic Field. Interaction of Radiation with Matter.- 8.1 Normal, or Wick, Products.- 8.2 Quantization of the Electromagnetic Field (Coulomb Gauge). The Casimir Effect.- 8.2.1 Quantization of the Electromagnetic Field.- 8.2.2 Multipole Expansion.- 8.2.3 The Casimir Effect.- 8.3 Interaction of the Radiation with Slowly Moving Particles...- 8.3.1 Radiative Decays, and Absorption of Radiation.- 8.3.2 Low-Energy Compton Scattering.- 8.4 Bremsstrahlung.- 8.5 The Classical Limit. Coherent States.- 8.6 Uncertainty Relations for Field Variables.- 9. Quantum Fields: Spin 0, 1/2, 1. Covariant Quantization of the Electromagnetic Field.- 9.1 Generalities.- 9.2 Localization of Particles in Relativistic Quantum Mechanics..- 9.3 Retardation and Consistency.- 9.4 Quantization of Scalar Fields and of Massive Vector Fields...- 9.4.1 Second Quantization for Spinless Particles.- 9.4.2 Massive Vector Particles.- 9.5 Quantization of the Dirac Field. Weyl and Majorana Particles.- 9.6 Covariant Quantization of the Electromagnetic Field.- 9.6.1 The Gupta-Bleuler Space.- 9.6.2 Covariant Transformation.- 9.6.3 The Metric Operator Method.- 9.7 Time-Ordered Product. Propagators.- 9.8 Interactions in Quantum Field Theory. Lagrangian Formulation.- 9.8.1 Lagrangian Formalism for Fields.- 9.8.2 Interactions.- 9.9 Gauge Invariance in Quantum Electrodynamics.- 10. Interactions in Quantum Field Theory. Nonrelativistic Limit. Reduction to Equivalent Potential.- 10.1 Potentials Equivalent to Field-Theoretic Interactions. General Method.- 10.2 Equivalent Potential for Two Particles in Electromagnetic Interaction.- 10.2.1 Elastic Collision of Two Charged Particles in the Born Approximation.- 10.2.2 Nonrelativistic Limit.- 10.2.3 Relativistic Corrections. The Breit Term.- 10.3 Hydrogenlike Atoms: Hyperfine Structure. System with Two Electrons: the Helium Atom.- 10.3.1 Hydrogenlike Atoms.- 10.3.2 System With Two Electrons. The Helium Atom.- 10.4 Electron-Positron Collisions: Effective Potential. Positronium.- 10.4.1 Scattering Amplitude in the Born Approximation..- 10.4.2 Annihilation Channel.- 10.4.3 Positronium.- 10.5 Scalar and Pseudoscalar Interactions. The Yukawa Potential..- 10.6 Weak Neutral Currents. Parity Violation in Atoms.- 11. Relativistic Collisions in Field Theory. Feynman Rules. Decays.- 11.1 Electron-Positron Annihilation into Two Photons, and Pair Creation by Two-Photon Collisions.- 11.1.1 e+e- Annihilation into 2?.- 11.1.2 Creation of an e+e- Pair by Two Photons.- 11.2 Feynman Rules. Gauge Invariance.- 11.2.1 Feynman Rules for the Evaluation of Transition Amplitudes.- 11.2.2 Gauge Invariance.- 11.3 Polarized and Unpolarized Cross-sections. Sums Over Polarizations.- 11.4 Compton Scattering (Relativistic).- 11.5 Decay of Bound States.- 11.5.1 General Theory.- 11.5.2 Decays of Positronium.- 11.5.3 Decay of Muonium into e+e-. Decays of Quarkonium.- 12. Relativistic Interactions with Classical Sources.- 12.1 Interaction with a Fixed (Classical) Potential.- 12.1.1 Scattering by an External Field.- 12.1.2 Bremsstrahlung.- 12.2 Photon Emission by a Classical Source. The Bloch-Nordsieck Theorem. Classical Limit.- 12.2.1 Classical Radiation.- 12.2.2 Photon Emission by a Classical Current.- 12.2.3 Radiation of Coherent States.- 12.2.4 The Bloch-Nordsieck Theorem.- 12.3 Propagation of an Electron in a Classical Potential. The Proper-Time Method.- 12.3.1 Electron in a Coulomb Potential.- 12.3.2 The Proper-Time Method.- 12.3.3 Dirac Particle in a Constant Field, or in a Plane Wave.- Appendices.- A.1 Spherical Harmonics, Clebsch-Gordan Coefficients, Matrix Representations of the Rotation Group.- A.1.1 Spherical Harmonics.- A.1.2 Some Specific Values.- A.1.3 Multiplication Formulas.- A.1.4 Gegenbauer-like Formulas.- A.1.5 Spinor and Vector Spherical Harmonics.- A.1.6 Clebsch-Gordan Coefficients.- A.1.7 Rotation Matrices.- A.2 Special Functions.- A.2.1 Kummer, or Confluent Hypergeometric Functions.- A.2.2 Bessel Functions.- A.2.3 Spherical Bessel Functions.- A.2.4 Bessel Functions of the Second Kind.- A.2.5 Laguerre Polynomials.- A.4 ? Matrices.- A.4.1 The Pauli Realization.- A.4.2 The Weyl Realization.- A.4.3 The Majorana Realization.- A.6 Physical Quantities.- A.6.1 SI (Gauss) Units.- A.6.3 Other Relations.- References.


Best Sellers


Product Details
  • ISBN-13: 9783540604532
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publisher Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Height: 235 mm
  • Returnable: N
  • Width: 155 mm
  • ISBN-10: 3540604537
  • Publisher Date: 03 Sep 1996
  • Binding: Hardback
  • Language: English
  • Weight: 640 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Relativistic Quantum Mechanics and Introduction to Field Theory
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
Relativistic Quantum Mechanics and Introduction to Field Theory
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Relativistic Quantum Mechanics and Introduction to Field Theory

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!