Probability, Random Variables, and Random Processes
Home > Science, Technology & Agriculture > Technology: general issues > Maths for engineers > Probability, Random Variables, and Random Processes: Theory and Signal Processing Applications
Probability, Random Variables, and Random Processes: Theory and Signal Processing Applications

Probability, Random Variables, and Random Processes: Theory and Signal Processing Applications

|
     0     
5
4
3
2
1




International Edition


About the Book

Probability, Random Variables, and Random Processes is a comprehensive textbook on probability theory for engineers that provides a more rigorous mathematical framework than is usually encountered in undergraduate courses. It is intended for first-year graduate students who have some familiarity with probability and random variables, though not necessarily of random processes and systems that operate on random signals. It is also appropriate for advanced undergraduate students who have a strong mathematical background. The book has the following features: Several appendices include related material on integration, important inequalities and identities, frequency-domain transforms, and linear algebra. These topics have been included so that the book is relatively self-contained. One appendix contains an extensive summary of 33 random variables and their properties such as moments, characteristic functions, and entropy. Unlike most books on probability, numerous figures have been included to clarify and expand upon important points. Over 600 illustrations and MATLAB plots have been designed to reinforce the material and illustrate the various characterizations and properties of random quantities. Sufficient statistics are covered in detail, as is their connection to parameter estimation techniques. These include classical Bayesian estimation and several optimality criteria: mean-square error, mean-absolute error, maximum likelihood, method of moments, and least squares. The last four chapters provide an introduction to several topics usually studied in subsequent engineering courses: communication systems and information theory; optimal filtering (Wiener and Kalman); adaptive filtering (FIR and IIR); and antenna beamforming, channel equalization, and direction finding. This material is available electronically at the companion website. Probability, Random Variables, and Random Processes is the only textbook on probability for engineers that includes relevant background material, provides extensive summaries of key results, and extends various statistical techniques to a range of applications in signal processing.

Table of Contents:
PREFACE xxi NOTATION xxv 1 Overview and Background 1 1.1 Introduction 1 1.1.1 Signals, Signal Processing, and Communications 3 1.1.2 Probability, Random Variables, and Random Vectors 9 1.1.3 Random Sequences and Random Processes 11 1.1.4 Delta Functions 16 1.2 Deterministic Signals and Systems 19 1.2.1 Continuous Time 20 1.2.2 Discrete Time 25 1.2.3 Discrete-Time Filters 29 1.2.4 State-Space Realizations 32 1.3 Statistical Signal Processing with MATLAB® 35 1.3.1 Random Number Generation 35 1.3.2 Filtering 38 Problems 39 Further Reading 45 PART I Probability, Random Variables, and Expectation 2 Probability Theory 49 2.1 Introduction 49 2.2 Sets and Sample Spaces 50 2.3 Set Operations 54 2.4 Events and Fields 58 2.5 Summary of a Random Experiment 64 2.6 Measure Theory 64 2.7 Axioms of Probability 68 2.8 Basic Probability Results 69 2.9 Conditional Probability 71 2.10 Independence 73 2.11 Bayes’ Formula 74 2.12 Total Probability 76 2.13 Discrete Sample Spaces 79 2.14 Continuous Sample Spaces 83 2.15 Nonmeasurable Subsets of R 84 Problems 87 Further Reading 90 3 Random Variables 91 3.1 Introduction 91 3.2 Functions and Mappings 91 3.3 Distribution Function 96 3.4 Probability Mass Function 101 3.5 Probability Density Function 103 3.6 Mixed Distributions 104 3.7 Parametric Models for Random Variables 107 3.8 Continuous Random Variables 109 3.8.1 Gaussian Random Variable (Normal) 110 3.8.2 Log-Normal Random Variable 113 3.8.3 Inverse Gaussian Random Variable (Wald) 114 3.8.4 Exponential Random Variable (One-Sided) 116 3.8.5 Laplace Random Variable (Double-Sided Exponential) 119 3.8.6 Cauchy Random Variable 122 3.8.7 Continuous Uniform Random Variable 124 3.8.8 Triangular Random Variable 125 3.8.9 Rayleigh Random Variable 127 3.8.10 Rice Random Variable 129 3.8.11 Gamma Random Variable (Erlang for r ∈ N) 131 3.8.12 Beta Random Variable (Arcsine for α = β = 1/2, Power Function for β = 1) 133 3.8.13 Pareto Random Variable 136 3.8.14 Weibull Random Variable 137 3.8.15 Logistic Random Variable (Sigmoid for {μ = 0, α = 1}) 139 3.8.16 Chi Random Variable (Maxwell–Boltzmann, Half-Normal) 141 3.8.17 Chi-Square Random Variable 144 3.8.18 F-Distribution 147 3.8.19 Student’s t Distribution 149 3.8.20 Extreme Value Distribution (Type I: Gumbel) 150 3.9 Discrete Random Variables 151 3.9.1 Bernoulli Random Variable 152 3.9.2 Binomial Random Variable 154 3.9.3 Geometric Random Variable (with Support Z+ or N) 157 3.9.4 Negative Binomial Random Variable (Pascal) 160 3.9.5 Poisson Random Variable 162 3.9.6 Hypergeometric Random Variable 165 3.9.7 Discrete Uniform Random Variable 167 3.9.8 Logarithmic Random Variable (Log-Series) 168 3.9.9 Zeta Random Variable (Zipf) 170 Problems 173 Further Reading 176 4 Multiple Random Variables 177 4.1 Introduction 177 4.2 Random Variable Approximations 177 4.2.1 Binomial Approximation of Hypergeometric 177 4.2.2 Poisson Approximation of Binomial 179 4.2.3 Gaussian Approximations 181 4.2.4 Gaussian Approximation of Binomial 181 4.2.5 Gaussian Approximation of Poisson 181 4.2.6 Gaussian Approximation of Hypergeometric 183 4.3 Joint and Marginal Distributions 183 4.4 Independent Random Variables 186 4.5 Conditional Distribution 187 4.6 Random Vectors 190 4.6.1 Bivariate Uniform Distribution 193 4.6.2 Multivariate Gaussian Distribution 193 4.6.3 Multivariate Student’s t Distribution 196 4.6.4 Multinomial Distribution 197 4.6.5 Multivariate Hypergeometric Distribution 198 4.6.6 Bivariate Exponential Distributions 200 4.7 Generating Dependent Random Variables 201 4.8 Random Variable Transformations 205 4.8.1 Transformations of Discrete Random Variables 205 4.8.2 Transformations of Continuous Random Variables 207 4.9 Important Functions of Two Random Variables 218 4.9.1 Sum: Z = X + Y 218 4.9.2 Difference: Z = X − Y 220 4.9.3 Product: Z = XY 221 4.9.4 Quotient (Ratio): Z = X/Y 224 4.10 Transformations of Random Variable Families 226 4.10.1 Gaussian Transformations 226 4.10.2 Exponential Transformations 227 4.10.3 Chi-Square Transformations 228 4.11 Transformations of Random Vectors 229 4.12 Sample Mean ¯X and Sample Variance S2 232 4.13 Minimum, Maximum, and Order Statistics 234 4.14 Mixtures 238 Problems 240 Further Reading 243 5 Expectation and Moments 244 5.1 Introduction 244 5.2 Expectation and Integration 244 5.3 Indicator Random Variable 245 5.4 Simple Random Variable 246 5.5 Expectation for Discrete Sample Spaces 247 5.6 Expectation for Continuous Sample Spaces 250 5.7 Summary of Expectation 253 5.8 Functional View of the Mean 254 5.9 Properties of Expectation 255 5.10 Expectation of a Function 259 5.11 Characteristic Function 260 5.12 Conditional Expectation 265 5.13 Properties of Conditional Expectation 267 5.14 Location Parameters: Mean, Median, and Mode 276 5.15 Variance, Covariance, and Correlation 280 5.16 Functional View of the Variance 283 5.17 Expectation and the Indicator Function 284 5.18 Correlation Coefficients 285 5.19 Orthogonality 291 5.20 Correlation and Covariance Matrices 294 5.21 Higher Order Moments and Cumulants 296 5.22 Functional View of Skewness 302 5.23 Functional View of Kurtosis 303 5.24 Generating Functions 304 5.25 Fourth-Order Gaussian Moment 309 5.26 Expectations of Nonlinear Transformations 310 Problems 313 Further Reading 316 PART II Random Processes, Systems, and Parameter Estimation 6 Random Processes 319 6.1 Introduction 319 6.2 Characterizations of a Random Process 319 6.3 Consistency and Extension 324 6.4 Types of Random Processes 325 6.5 Stationarity 326 6.6 Independent and Identically Distributed 329 6.7 Independent Increments 331 6.8 Martingales 333 6.9 Markov Sequence 338 6.10 Markov Process 350 6.11 Random Sequences 352 6.11.1 Bernoulli Sequence 352 6.11.2 Bernoulli Scheme 352 6.11.3 Independent Sequences 353 6.11.4 Bernoulli Random Walk 354 6.11.5 Binomial Counting Sequence 356 6.12 Random Processes 359 6.12.1 Poisson Counting Process 359 6.12.2 Random Telegraph Signal 365 6.12.3 Wiener Process 368 6.12.4 Gaussian Process 371 6.12.5 Pulse Amplitude Modulation 372 6.12.6 Random Sine Signals 373 Problems 375 Further Reading 379 7 Stochastic Convergence, Calculus, and Decompositions 380 7.1 Introduction 380 7.2 Stochastic Convergence 380 7.3 Laws of Large Numbers 388 7.4 Central Limit Theorem 390 7.5 Stochastic Continuity 394 7.6 Derivatives and Integrals 404 7.7 Differential Equations 414 7.8 Difference Equations 422 7.9 Innovations and Mean-Square Predictability 423 7.10 Doob–Meyer Decomposition 428 7.11 Karhunen–Lo`eve Expansion 433 Problems 441 Further Reading 444 8 Systems, Noise, and Spectrum Estimation 445 8.1 Introduction 445 8.2 Correlation Revisited 445 8.3 Ergodicity 448 8.4 Eigenfunctions of RXX(τ ) 456 8.5 Power Spectral Density 457 8.6 Power Spectral Distribution 463 8.7 Cross-Power Spectral Density 465 8.8 Systems with Random Inputs 468 8.8.1 Nonlinear Systems 469 8.8.2 Linear Systems 471 8.9 Passband Signals 476 8.10 White Noise 479 8.11 Bandwidth 484 8.12 Spectrum Estimation 487 8.12.1 Periodogram 487 8.12.2 Smoothed Periodogram 493 8.12.3 Modified Periodogram 497 8.13 Parametric Models 500 8.13.1 Autoregressive Model 500 8.13.2 Moving-Average Model 505 8.13.3 Autoregressive Moving-Average Model 509 8.14 System Identification 513 Problems 515 Further Reading 518 9 Sufficient Statistics and Parameter Estimation 519 9.1 Introduction 519 9.2 Statistics 519 9.3 Sufficient Statistics 520 9.4 Minimal Sufficient Statistic 525 9.5 Exponential Families 528 9.6 Location-Scale Families 533 9.7 Complete Statistic 536 9.8 Rao–Blackwell Theorem 538 9.9 Lehmann–Scheff´e Theorem 540 9.10 Bayes Estimation 542 9.11 Mean-Square-Error Estimation 545 9.12 Mean-Absolute-Error Estimation 552 9.13 Orthogonality Condition 553 9.14 Properties of Estimators 555 9.14.1 Unbiased 555 9.14.2 Consistent 557 9.14.3 Efficient 559 9.15 Maximum A Posteriori Estimation 561 9.16 Maximum Likelihood Estimation 567 9.17 Likelihood Ratio Test 569 9.18 Expectation–Maximization Algorithm 570 9.19 Method of Moments 576 9.20 Least-Squares Estimation 577 9.21 Properties of LS Estimators 582 9.21.1 Minimum ξWLS 582 9.21.2 Uniqueness 582 9.21.3 Orthogonality 582 9.21.4 Unbiased 584 9.21.5 Covariance Matrix 584 9.21.6 Efficient: Achieves CRLB 585 9.21.7 BLU Estimator 585 9.22 Best Linear Unbiased Estimation 586 9.23 Properties of BLU Estimators 590 Problems 592 Further Reading 595 A Note on Part III of the Book 595 APPENDICES Introduction to Appendices 597 A Summaries of Univariate Parametric Distributions 599 A.1 Notation 599 A.2 Further Reading 600 A.3 Continuous Random Variables 601 A.3.1 Beta (Arcsine for α = β = 1/2, Power Function for β = 1) 601 A.3.2 Cauchy 602 A.3.3 Chi 603 A.3.4 Chi-Square 604 A.3.5 Exponential (Shifted by c) 605 A.3.6 Extreme Value (Type I: Gumbel) 606 A.3.7 F-Distribution 607 A.3.8 Gamma (Erlang for r ∈ N with (r ) = (r − 1)!) 608 A.3.9 Gaussian (Normal) 609 A.3.10 Half-Normal (Folded Normal) 610 A.3.11 Inverse Gaussian (Wald) 611 A.3.12 Laplace (Double-Sided Exponential) 612 A.3.13 Logistic (Sigmoid for {μ = 0, α = 1}) 613 A.3.14 Log-Normal 614 A.3.15 Maxwell–Boltzmann 615 A.3.16 Pareto 616 A.3.17 Rayleigh 617 A.3.18 Rice 618 A.3.19 Student’s t Distribution 619 A.3.20 Triangular 620 A.3.21 Uniform (Continuous) 621 A.3.22 Weibull 622 A.4 Discrete Random Variables 623 A.4.1 Bernoulli (with Support {0, 1}) 623 A.4.2 Bernoulli (Symmetric with Support {−1, 1}) 624 A.4.3 Binomial 625 A.4.4 Geometric (with Support Z+) 626 A.4.5 Geometric (Shifted with Support N) 627 A.4.6 Hypergeometric 628 A.4.7 Logarithmic (Log-Series) 629 A.4.8 Negative Binomial (Pascal) 630 A.4.9 Poisson 631 A.4.10 Uniform (Discrete) 632 A.4.11 Zeta (Zipf) 633 B Functions and Properties 634 B.1 Continuity and Bounded Variation 634 B.2 Supremum and Infimum 640 B.3 Order Notation 640 B.4 Floor and Ceiling Functions 641 B.5 Convex and Concave Functions 641 B.6 Even and Odd Functions 641 B.7 Signum Function 643 B.8 Dirac Delta Function 644 B.9 Kronecker Delta Function 645 B.10 Unit-Step Functions 646 B.11 Rectangle Functions 647 B.12 Triangle and Ramp Functions 647 B.13 Indicator Functions 648 B.14 Sinc Function 649 B.15 Logarithm Functions 650 B.16 Gamma Functions 651 B.17 Beta Functions 653 B.18 Bessel Functions 655 B.19 Q-Function and Error Functions 655 B.20 Marcum Q-Function 659 B.21 Zeta Function 659 B.22 Rising and Falling Factorials 660 B.23 Laguerre Polynomials 661 B.24 Hypergeometric Functions 662 B.25 Bernoulli Numbers 663 B.26 Harmonic Numbers 663 B.27 Euler–Mascheroni Constant 664 B.28 Dirichlet Function 664 Further Reading 664 C Frequency-Domain Transforms and Properties 665 C.1 Laplace Transform 665 C.2 Continuous-Time Fourier Transform 669 C.3 z-Transform 670 C.4 Discrete-Time Fourier Transform 676 Further Reading 677 D Integration and Integrals 678 D.1 Review of Riemann Integral 678 D.2 Riemann–Stieltjes Integral 681 D.3 Lebesgue Integral 684 D.4 Pdf Integrals 688 D.5 Indefinite and Definite Integrals 690 D.6 Integral Formulas 692 D.7 Double Integrals of Special Functions 692 Further Reading 696 E Identities and Infinite Series 697 E.1 Zero and Infinity 697 E.2 Minimum and Maximum 697 E.3 Trigonometric Identities 698 E.4 Stirling’s Formula 698 E.5 Taylor Series 699 E.6 Series Expansions and Closed-Form Sums 699 E.7 Vandermonde’s Identity 702 E.8 Pmf Sums and Functional Forms 703 E.9 Completing the Square 704 E.10 Summation by Parts 705 Further Reading 706 F Inequalities and Bounds for Expectations 707 F.1 Cauchy–Schwarz and H¨older Inequalities 707 F.2 Triangle and Minkowski Inequalities 708 F.3 Bienaym´e, Chebyshev, and Markov Inequalities 709 F.4 Chernoff’s Inequality 711 F.5 Jensen’s Inequality 713 F.6 Cram´er–Rao Inequality 714 Further Reading 718 G Matrix and Vector Properties 719 G.1 Basic Properties 719 G.2 Four Fundamental Subspaces 721 G.3 Eigendecomposition 722 G.4 LU, LDU, and Cholesky Decompositions 724 G.5 Jacobian Matrix and the Jacobian 726 G.6 Kronecker and Schur Products 728 G.7 Properties of Trace and Determinant 728 G.8 Matrix Inversion Lemma 729 G.9 Cauchy–Schwarz Inequality 730 G.10 Differentiation 730 G.11 Complex Differentiation 731 Further Reading 732 GLOSSARY 733 REFERENCES 743 INDEX 755 PART III Applications in Signal Processing and Communications Chapters at the Web Site www.wiley.com/go/randomprocesses 10 Communication Systems and Information Theory 771 10.1 Introduction 771 10.2 Transmitter 771 10.2.1 Sampling and Quantization 772 10.2.2 Channel Coding 777 10.2.3 Symbols and Pulse Shaping 778 10.2.4 Modulation 781 10.3 Transmission Channel 783 10.4 Receiver 786 10.4.1 Receive Filter 786 10.4.2 Demodulation 787 10.4.3 Gram–Schmidt Orthogonalization 789 10.4.4 Maximum Likelihood Detection 794 10.4.5 Matched Filter Receiver 797 10.4.6 Probability of Error 802 10.5 Information Theory 803 10.5.1 Mutual Information and Entropy 804 10.5.2 Properties of Mutual Information and Entropy 810 10.5.3 Continuous Distributions: Differential Entropy 813 10.5.4 Channel Capacity 818 10.5.5 AWGN Channel 820 Problems 821 Further Reading 824 11 Optimal Filtering www.wiley.com/go/randomprocesses 825 11.1 Introduction 825 11.2 Optimal Linear Filtering 825 11.3 Optimal Filter Applications 827 11.3.1 System Identification 827 11.3.2 Inverse Modeling 827 11.3.3 Noise Cancellation 828 11.3.4 Linear Prediction 828 11.4 Noncausal Wiener Filter 829 11.5 Causal Wiener Filter 831 11.6 Prewhitening Filter 837 11.7 FIR Wiener Filter 839 11.8 Kalman Filter 844 11.8.1 Evolution of the Mean and Covariance 846 11.8.2 State Prediction 846 11.8.3 State Filtering 848 11.9 Steady-State Kalman Filter 851 11.10 Linear Predictive Coding 857 11.11 Lattice Prediction-Error Filter 861 11.12 Levinson–Durbin Algorithm 865 11.13 Least-Squares Filtering 868 11.14 Recursive Least-Squares 872 Problems 876 Further Reading 879 12 Adaptive Filtering www.wiley.com/go/randomprocesses 880 12.1 Introduction 880 12.2 MSE Properties 880 12.3 Steepest Descent 889 12.4 Newton’s Method 894 12.5 LMS Algorithm 895 12.5.1 Convergence in the Mean 899 12.5.2 Convergence in the Mean-Square 901 12.5.3 Misadjustment 906 12.6 Modified LMS Algorithms 911 12.6.1 Sign-Error LMS Algorithm 911 12.6.2 Sign-Data LMS Algorithm 912 12.6.3 Sign-Sign LMS Algorithm 914 12.6.4 LMF Algorithm 914 12.6.5 Complex LMS Algorithm 916 12.6.6 “Leaky” LMS Algorithm 917 12.6.7 Normalized LMS Algorithm 918 12.6.8 Perceptron 920 12.6.9 Convergence of Modified LMS Algorithms 922 12.7 Adaptive IIR Filtering 923 12.7.1 Output-Error Formulation 924 12.7.2 Output-Error IIR Filter Algorithm 928 12.7.3 Equation-Error Formulation 932 12.7.4 Equation-Error Bias 933 Problems 936 Further Reading 939 13 Equalization, Beamforming, and Direction Finding www.wiley.com/go/randomprocesses 940 13.1 Introduction 940 13.2 Channel Equalization 941 13.3 Optimal Bussgang Algorithm 943 13.4 Blind Equalizer Algorithms 949 13.4.1 Sato’s Algorithm 949 13.4.2 Constant Modulus Algorithm 950 13.5 CMA Performance Surface 952 13.6 Antenna Arrays 958 13.7 Beampatterns 960 13.8 Optimal Beamforming 962 13.8.1 Known Look Direction 962 13.8.2 Multiple Constraint Beamforming 964 13.8.3 Training Signal 966 13.8.4 Maximum Likelihood 968 13.8.5 Maximum SNR and SINR 969 13.9 Adaptive Beamforming 970 13.9.1 LMS Beamforming 970 13.9.2 Constant Modulus Array 970 13.9.3 Decision-Directed Mode 973 13.9.4 Multistage CM Array 974 13.9.5 Output SINR and SNR 977 13.10 Direction Finding 981 13.10.1 Beamforming Approaches 981 13.10.2 MUSIC Algorithm 984 Problems 985 Further Reading 989


Best Sellers


Product Details
  • ISBN-13: 9780470242094
  • Publisher: John Wiley & Sons Inc
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 41 mm
  • Weight: 1610 gr
  • ISBN-10: 0470242094
  • Publisher Date: 07 Dec 2012
  • Height: 254 mm
  • No of Pages: 794
  • Returnable: N
  • Sub Title: Theory and Signal Processing Applications
  • Width: 198 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Probability, Random Variables, and Random Processes: Theory and Signal Processing Applications
John Wiley & Sons Inc -
Probability, Random Variables, and Random Processes: Theory and Signal Processing Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Probability, Random Variables, and Random Processes: Theory and Signal Processing Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!