Permutation Groups
Home > Mathematics and Science Textbooks > Mathematics > Groups and group theory > Permutation Groups
Permutation Groups

Permutation Groups

|
     0     
5
4
3
2
1




International Edition


About the Book

Permutation Groups form one of the oldest parts of group theory. Through the ubiquity of group actions and the concrete representations which they afford, both finite and infinite permutation groups arise in many parts of mathematics and continue to be a lively topic of research in their own right. The book begins with the basic ideas, standard constructions and important examples in the theory of permutation groups.It then develops the combinatorial and group theoretic structure of primitive groups leading to the proof of the pivotal O'Nan-Scott Theorem which links finite primitive groups with finite simple groups. Special topics covered include the Mathieu groups, multiply transitive groups, and recent work on the subgroups of the infinite symmetric groups. This text can serve as an introduction to permutation groups in a course at the graduate or advanced undergraduate level, or for self- study. It includes many exercises and detailed references to the current literature.

Table of Contents:
1. The Basic Ideas.- 1.1. Symmetry.- 1.2. Symmetric Groups.- 1.3. Group Actions.- 1.4. Orbits and Stabilizers.- 1.5. Blocks and Primitivity.- 1.6. Permutation Representations and Normal Subgroups.- 1.7. Orbits and Fixed Points.- 1.8. Some Examples from the Early History of Permutation Groups.- 1.9. Notes.- 2. Examples and Constructions.- 2.1. Actions on k-tuples and Subsets.- 2.2. Automorphism Groups of Algebraic Structures.- 2.3. Graphs.- 2.4. Relations.- 2.5. Semidirect Products.- 2.6. Wreath Products and Imprimitive Groups.- 2.7. Primitive Wreath Products.- 2.8. Affine and Projective Groups.- 2.9. The Transitive Groups of Degree at Most 7.- 2.10. Notes.- 3. The Action of a Permutation Group.- 3.1. Introduction.- 3.2. Orbits of the Stabilizer.- 3.3. Minimal Degree and Bases.- 3.4. Frobenius Groups.- 3.5. Permutation Groups Which Contain a Regular Subgroup.- 3.6. Computing in Permutation Groups.- 3.7. Notes.- 4. The Structure of a Primitive Group.- 4.1. Introduction.- 4.2. Centralizers and Normalizers in the Symmetric Group.- 4.3. The Socle.- 4.4. Subnormal Subgroups and Primitive Groups.- 4.5. Constructions of Primitive Groups with Nonregular Socles.- 4.6. Finite Primitive Groups with Nonregular Socles.- 4.7. Primitive Groups with Regular Socles.- 4.8. Applications of the O’Nan-Scott Theorem.- 4.9. Notes.- 5. Bounds on Orders of Permutation Groups.- 5.1. Orders of Elements.- 5.2. Subgroups of Small Index in Finite Alternating and Symmetric Groups.- 5.3. The Order of a Simply Primitive Group.- 5.4. The Minimal Degree of a 2-transitive Group.- 5.5. The Alternating Group as a Section of a Permutation Group.- 5.6. Bases and Orders of 2-transitive Groups.- 5.7. The Alternating Group as a Section of a Linear Group.- 5.8. Small Subgroups of Sn.- 5.9. Notes.- 6. The MathieuGroups and Steiner Systems.- 6.1. The Mathieu Groups.- 6.2. Steiner Systems.- 6.3. The Extension of AG2 (3).- 6.4. The Mathieu Groups M 11 and M12.- 6.5. The Geometry of PG 2 (4).- 6.6. The Extension of PG 2 (4) and the Group M 22.- 6.7. The Mathieu Groups M 23 and M 24.- 6.8. The Geometry of W24.- 6.9. Notes.- 7. Multiply Transitive Groups.- 7.1. Introduction.- 7.2. Normal Subgroups.- 7.3. Limits to Multiple Transitivity.- 7.4. Jordan Groups.- 7.5. Transitive Extensions.- 7.6. Sharply k-transitive Groups.- 7.7. The Finite 2-transitive Groups.- 7.8. Notes.- 8. The Structure of the Symmetric Groups.- 8.1. The Normal Structure of Sym(?).- 8.2. The Automorphisms of Sym(?).- 8.3. Subgroups of F Sym(?).- 8.4. Subgroups of Small Index in Sym(?).- 8.5. Maximal Subgroups of the Symmetric Groups.- 8.6. Notes.- 9. Examples and Applications of Infinite Permutation Groups.- 9.1. The Construction of a Finitely Generated Infinite p-group.- 9.2. Groups Acting on Trees.- 9.3. Highly Transitive Free Subgroups of the Symmetric Group.- 9.4. Homogeneous Groups.- 9.5. Automorphisms of Relational Structures.- 9.6. The Universal Graph.- 9.7. Notes.- Appendix A. Classification of Finite Simple Groups.- Appendix B. The Primitive Permutation Groups of Degree Less than 1000.- References.


Best Sellers


Product Details
  • ISBN-13: 9780387945996
  • Publisher: Springer-Verlag New York Inc.
  • Publisher Imprint: Springer-Verlag New York Inc.
  • Height: 235 mm
  • No of Pages: 348
  • Returnable: Y
  • ISBN-10: 0387945997
  • Publisher Date: 11 Apr 1996
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Permutation Groups
Springer-Verlag New York Inc. -
Permutation Groups
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Permutation Groups

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!