Optimization Techniques for Solving Complex ms
Home > Mathematics and Science Textbooks > Mathematics > Optimization > Optimization Techniques for Solving Complex ms
Optimization Techniques for Solving Complex ms

Optimization Techniques for Solving Complex ms

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

Real-world problems and modern optimization techniques to solve them Here, a team of international experts brings together core ideas for solving complex problems in optimization across a wide variety of real-world settings, including computer science, engineering, transportation, telecommunications, and bioinformatics. Part One-covers methodologies for complex problem solving including genetic programming, neural networks, genetic algorithms, hybrid evolutionary algorithms, and more. Part Two-delves into applications including DNA sequencing and reconstruction, location of antennae in telecommunication networks, metaheuristics, FPGAs, problems arising in telecommunication networks, image processing, time series prediction, and more. All chapters contain examples that illustrate the applications themselves as well as the actual performance of the algorithms.?Optimization Techniques for Solving Complex Problems is a valuable resource for practitioners and researchers who work with optimization in real-world settings.

Table of Contents:
PART I: METHODOLOGIES FOR COMPLEX PROBLEM SOLVING. 1. Generating Automatic Projections by Means of GP (C. Estebanez,and R. Aler). 1.1 Introduction. 1.2 Background. 1.3 Domains. 1.4 Algorithmic Proposal. 1.5 Experimental Analysis. 1.6 Conclusions and Future Work. References. 2. Neural Lazy Local Learning (J. M. Valls, I. M. Galvan, and P. Isasi). 2.1 Introduction. 2.2 LRBNN: Lazy Radial Basis Neural Networks. 2.3 Experimental Framework. 2.4 Conclusions. References. 3. Optimization by Using GAs with Micropopulations (Y. Saez). 3.1 Introduction. 3.2 Algorithmic Proposal. 3.3 Experimental Analysis: the Rastrigin Function. 3.4 Conclusions. References. 4. Analyzing Parallel Cellular Genetic Algorithms (G. Luque, E. Alba, and B. Dorronsoro). 4.1 Introduction. 4.2 Cellular Genetic Algorithms. 4.3 Parallel Models for cGAs. 4.4 Brief Survey on Parallel cGAs. 4.5 Experimental Results. 4.6 Conclusions. References. 5. Evaluating New Advanced Multiobjective Metaheuristics (A. J. Nebro, J.J. Durillo, F. Luna, and E. Alba). 5.1 Introduction. 5.2 Background. 5.3 Description of the Metaheuristics. 5.4 Experimentation Methodology. 5.5 Computational Results. 5.6 Conclusions and Future Work. References. 6. Canonical Metaheuristics for DOPs (G. Leguizamon, G. Ordonez, S. Molina, and E. Alba). 6.1 Introduction. 6.2 Dynamic Optimization Problems. 6.3 Canonical MHs for DOPs. 6.4 Benchmarks. 6.5 Metrics. 6.6 Conclusions. References. 7. Solving Constrained Optimization Problems with HEAs (C. Cotta, and A. J. Fernandez). 7.1 Introduction. 7.2 Strategies for Solving CCOPs with HEAs. 7.3 Study Cases. 7.4 Conclusions. References. 8. Optimization of Time Series Using Parallel, Adaptive, and Neural Techniques (J. A. Gomez, M. D. Jaraiz, M. A. Vega, and J. M. Sanchez). 8.1 Introduction. 8.2 Time Series Identification. 8.3 Optimization Problem. 8.4 Algorithmic Proposal. 8.5 Experimental Analysis. 8.6 Conclusions and Future Work. References. 9. Using Reconfigurable Computing to Optimization of Cryptographic Algorithms (J. M. Granado, M. A. Vega, J. M. Sanchez, and J. A. Gomez). 9.1 Introduction. 9.2 Description of the Cryptographic Algorithms. 9.3 Implementation Proposal. 9.4 Results. 9.5 Conclusions. References. 10. Genetic Algorithms, Parallelism and Reconfigurable Hardware (J. M. Sanchez, M. Rubio, M. A. Vega, and J. A. Gomez). 10.1 Introduction. 10.2 State of the Art. 10.3 FPGA Problem Description and Solution. 10.4 Algorithmic Proposal. 10.5 Experiments and Results. 10.6 Conclusions and Future Work. References. 11. Divide and Conquer, Advanced Techniques (C. Loon, G. Miranda, and C. Rodriguez). 11.1 Introduction. 11.2 The Algorithm of the Skeleton. 11.3 Computational Results. 11.4 Conclusions. References. 12. Tools for Tree Searches: Branch and Bound and A* Algorithms (C. Leon, G. Miranda, and C. Rodriguez). 12.1 Introduction. 12.2 Background. 12.3 Algorithmic Skeleton for Tree Searches. 12.4 Experimentation Methodology. 12.5 Computational Results. 12.6 Conclusions and Future Work. References. 13. Tools for Tree Searches: Dynamic Programming (C. Leon, G. Miranda, and C. Rodriguez). 13.1 Introduction. 13.2 The TopDown. Approach. 13.3 The BottomUp Approach. 13.4 Automata Theory and Dynamic Programming. 13.5 Parallel Algorithms. 13.6 Dynamic Programming Heuristics. 13.7 Conclusions. References. PART II: APPLICATIONS. 14. Automatic Search of Behavior Strategies in Auctions (D. Quintana, and A. Mochon). 14.1 Introduction. 14.2 Evolutionary Techniques in Auctions. 14.3 Theoretical Framework: the Ausubel Auction. 14.4 Algorithmic Proposal. 14.5 Experimental analysis. 14.6 Conclusions and Future Work. References. 15. Evolving Rules For Local Time Series Prediction (C. Luque, J. M. Valls, and P. Isasi). 15.1 Introduction. 15.2 Evolutionary Algorithms for Generating Prediction Rules. 15.3 Description of the Method. 15.4 Experiments. 15.5 Conclusions. References. 16. Metaheuristics in Bioinformatics (C. Cotta, A. J. Fernandez, J. E. Gallardo, G. Luque, and E. Alba). 16.1 Introduction. 16.2 Metaheuristics and Bioinformatics. 16.3 The DNA Fragment Assembly Problem. 16.4 The Shortest Common Supersequence Problem. 16.5 Conclusions. References. 17. Optimal Location of Antennae in Telecommunication Networks (G. Molina, F. Chicano, and E. Alba). 17.1 Introduction. 17.2 State of the Art. 17.3 Radio Network Design Problem. 17.4 Optimization Algorithms. 17.5 Basic Problem Instances. 17.6 Advanced Problem Instance. 17.7 Conclusions. References. 18. Optimization of Image Processing Algorithms Using FPGAs (M. A. Vega, A. Gomez, J. A. Gomez, and J. M. Sanchez). 18.1 Introduction. 18.2 Background. 18.3 Main Features of the FPGAbased Image Processing. 18.4 Advanced Details. 18.5 Experimental Analysis: Software vs. FPGA. 18.6 Conclusions. References. 19. Application of Cellular Automata Algorithms to the Parallel Simulation of Laser Dynamics (J. L. Guisado, F. Jimenez Morales, J. M. Guerra, F. Fernandez de Vega). 19.1 Introduction. 19.2 Background. 19.3 The Problem: Laser Dynamics. 19.4 Algorithmic Proposal. 19.5 Experimental Analysis. 19.6 Parallel Implementation of the Algorithm. 19.7 Conclusions and Future Work. References. 20. Dense Stereo Disparity from an ALife Standpoint (G. Olague, F. Fernandez, C. B. Perez, and E. Lutton). 20.1 Introduction. 20.2 Infection Algorithm with an Evolutionary Approach. 20.3 Experimental Results. 20.4 Conclusion. References. 21. Approaches to Multidimensional Knapsack Problems (J. E. Gallardo, C. Cotta, and A. J. Fernandez). 21.1 Introduction. 21.2 The Multidimensional Knapsack Problem. 21.3 Hybrid Models. 21.4 Experimental Results. 21.5 Conclusions and Future Work. References. 22. Greedy Seeding and ProblemSpecific Operators for GAs Solving Strip Packing Problems (C. Salto, J. M. Molina, and E. Alba). 22.1 Introduction. 22.2 Background. 22.3 A Hybrid GA for the 2SPP. 22.4 Genetic Operators for Solving the 2SPP. 22.5 Initial Seeding. 22.6 Implementation. 22.7 Computational Analysis. 22.8 Conclusions. References. 23. Solving the KCT Problem: Large Scale Neighborhood Search and Solution Merging (C. Blum, and M. Blesa). 23.1 Introduction. 23.2 Hybrid Algorithms for the KCT Problem. 23.3 Experimental Evaluation. 23.4 Summary and Conclusions. References. 24. Experimental Study of Gabased Schedulers in Dynamic Distributed Computing Environments (F. Xhafa, and J. Carretero). 24.1 Introduction. 24.2 Related Work. 24.3 Independent Job Scheduling Problem. 24.4 Genetic Algorithms for Scheduling in Grid Systems. 24.5 Grid Simulator. 24.6 The Interface for Using Gabased Scheduler with the Grid Simulator. 24.7 Experimental Analysis. 24.8 Conclusions. References. 25. ROS: Remote Optimization Service (J. GarciaNieto, F. Chicano, and E. Alba). 25.1 Introduction. 25.2 Background and State of the Art. 25.3 ROS Architecture. 25.4 Information Exchange in ROS. 25.5 XML in ROS. 25.6 Wrappers. 25.7 Evaluation of ROS. 25.8 Conclusions and Future Work. References. 26. SIRVA, MOSET, TIDESI, ABACUS: Remote Services for Advanced. Problem Optimization (J. A. Gomez, M. A. Vega, J. M. Sanchez, J. L. Guisado, D. Lombrana, and F. Fernandez) . 26.1 Introduction. 26.2 SIRVA. 26.3 MOSET and TIDESI. 26.4 ABACUS. References. Index.


Best Sellers


Product Details
  • ISBN-13: 9780470411353
  • Publisher: John Wiley and Sons Ltd
  • Binding: Other digital
  • No of Pages: 504
  • ISBN-10: 047041135X
  • Publisher Date: 16 May 2008
  • Language: English


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Optimization Techniques for Solving Complex ms
John Wiley and Sons Ltd -
Optimization Techniques for Solving Complex ms
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Optimization Techniques for Solving Complex ms

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!