Optimal Design of Experiments
Home > Mathematics and Science Textbooks > Science: general issues > Scientific equipment, experiments and techniques > Optimal Design of Experiments: A Case Study Approach
Optimal Design of Experiments: A Case Study Approach

Optimal Design of Experiments: A Case Study Approach

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

"This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required reading for anyone interested in using the design of experiments in industrial settings." —Christopher J. Nachtsheim, Frank A Donaldson Chair in Operations Management, Carlson School of Management, University of Minnesota  This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities? While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain.

Table of Contents:
Preface. Acknowledgments. 1 A simple comparative experiment. 1.1 Key concepts. 1.2 The setup of a comparative experiment. 1.3 Summary. 2 An optimal screening experiment. 2.1 Key concepts. 2.2 Case: an extraction experiment. 2.2.1 Problem and design. 2.2.2 Data analysis. 2.3 Peek into the black box. 2.3.1 Main-effects models. 2.3.2 Models with two-factor interaction effects. 2.3.3 Factor scaling. 2.3.4 Ordinary least squares estimation. 2.3.5 Significance tests and statistical power calculations. 2.3.6 Variance inflation. 2.3.7 Aliasing. 2.3.8 Optimal design. 2.3.9 Generating optimal experimental designs. 2.3.10 The extraction experiment revisited. 2.3.11 Principles of successful screening: sparsity, hierarchy, and heredity. 2.4 Background reading. 2.4.1 Screening. 2.4.2 Algorithms for finding optimal designs. 2.5 Summary. 3 Adding runs to a screening experiment. 3.1 Key concepts. 3.2 Case: an augmented extraction experiment. 3.2.1 Problem and design. 3.2.2 Data analysis. 3.3 Peek into the black box. 3.3.1 Optimal selection of a follow-up design. 3.3.2 Design construction algorithm. 3.3.3 Foldover designs. 3.4 Background reading. 3.5 Summary. 4 A response surface design with a categorical factor. 4.1 Key concepts. 4.2 Case: a robust and optimal process experiment. 4.2.1 Problem and design. 4.2.2 Data analysis. 4.3 Peek into the black box. 4.3.1 Quadratic effects. 4.3.2 Dummy variables for multilevel categorical factors. 4.3.3 Computing D-efficiencies. 4.3.4 Constructing Fraction of Design Space plots. 4.3.5 Calculating the average relative variance of prediction. 4.3.6 Computing I-efficiencies. 4.3.7 Ensuring the validity of inference based on ordinary least squares. 4.3.8 Design regions. 4.4 Background reading. 4.5 Summary. 5 A response surface design in an irregularly shaped design region. 5.1 Key concepts. 5.2 Case: the yield maximization experiment. 5.2.1 Problem and design. 5.2.2 Data analysis. 5.3 Peek into the black box. 5.3.1 Cubic factor effects. 5.3.2 Lack-of-fit test. 5.3.3 Incorporating factor constraints in the design construction algorithm. 5.4 Background reading. 5.5 Summary. 6 A "mixture" experiment with process variables. 6.1 Key concepts. 6.2 Case: the rolling mill experiment. 6.2.1 Problem and design. 6.2.2 Data analysis. 6.3 Peek into the black box. 6.3.1 The mixture constraint. 6.3.2 The effect of the mixture constraint on the model. 6.3.3 Commonly used models for data from mixture experiments. 6.3.4 Optimal designs for mixture experiments. 6.3.5 Design construction algorithms for mixture experiments. 6.4 Background reading. 6.5 Summary. 7 A response surface design in blocks. 7.1 Key concepts. 7.2 Case: the pastry dough experiment. 7.2.1 Problem and design. 7.2.2 Data analysis. 7.3 Peek into the black box. 7.3.1 Model. 7.3.2 Generalized least squares estimation. 7.3.3 Estimation of variance components. 7.3.4 Significance tests. 7.3.5 Optimal design of blocked experiments. 7.3.6 Orthogonal blocking. 7.3.7 Optimal versus orthogonal blocking. 7.4 Background reading. 7.5 Summary. 8 A screening experiment in blocks. 8.1 Key concepts. 8.2 Case: the stability improvement experiment. 8.2.1 Problem and design. 8.2.2 Afterthoughts about the design problem. 8.2.3 Data analysis. 8.3 Peek into the black box. 8.3.1 Models involving block effects. 8.3.2 Fixed block effects. 8.4 Background reading. 8.5 Summary. 9 Experimental design in the presence of covariates. 9.1 Key concepts. 9.2 Case: the polypropylene experiment. 9.2.1 Problem and design. 9.2.2 Data analysis. 9.3 Peek into the black box. 9.3.1 Covariates or concomitant variables. 9.3.2 Models and design criteria in the presence of covariates. 9.3.3 Designs robust to time trends. 9.3.4 Design construction algorithms. 9.3.5 To randomize or not to randomize. 9.3.6 Final thoughts. 9.4 Background reading. 9.5 Summary. 10 A split-plot design. 10.1 Key concepts. 10.2 Case: the wind tunnel experiment. 10.2.1 Problem and design. 10.2.2 Data analysis. 10.3 Peek into the black box. 10.3.1 Split-plot terminology. 10.3.2 Model. 10.3.3 Inference from a split-plot design. 10.3.4 Disguises of a split-plot design. 10.3.5 Required number of whole plots and runs. 10.3.6 Optimal design of split-plot experiments. 10.3.7 A design construction algorithm for optimal split-plot designs. 10.3.8 Difficulties when analyzing data from split-plot experiments. 10.4 Background reading. 10.5 Summary. 11 A two-way split-plot design. 11.1 Key concepts. 11.2 Case: the battery cell experiment. 11.2.1 Problem and design. 11.2.2 Data analysis. 11.3 Peek into the black box. 11.3.1 The two-way split-plot model. 11.3.2 Generalized least squares estimation. 11.3.3 Optimal design of two-way split-plot experiments. 11.3.4 A design construction algorithm for D-optimal two-way split-plot designs. 11.3.5 Extensions and related designs. 11.4 Background reading. 11.5 Summary. Bibliography. Index.


Best Sellers


Product Details
  • ISBN-13: 9781119974000
  • Publisher: John Wiley & Sons Inc
  • Binding: Digital (delivered electronically)
  • No of Pages: 304
  • ISBN-10: 1119974003
  • Publisher Date: 13 Jun 2011
  • Language: English
  • Sub Title: A Case Study Approach


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Optimal Design of Experiments: A Case Study Approach
John Wiley & Sons Inc -
Optimal Design of Experiments: A Case Study Approach
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Optimal Design of Experiments: A Case Study Approach

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!