Molecular Modeling of Geochemical Reactions
Home > Sciences & Environment > Earth sciences > Geology, geomorphology and the lithosphere > Geochemistry > Molecular Modeling of Geochemical Reactions: An Introduction
Molecular Modeling of Geochemical Reactions: An Introduction

Molecular Modeling of Geochemical Reactions: An Introduction

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

Molecular processes in nature affect human health, the availability of resources and the Earth’s climate. Molecular modelling is a powerful and versatile toolbox that complements experimental data and provides insights where direct observation is not currently possible. Molecular Modeling of Geochemical Reactions: An Introduction applies computational chemistry to geochemical problems. Chapters focus on geochemical applications in aqueous, petroleum, organic, environmental, bio- and isotope geochemistry, covering the fundamental theory, practical guidance on applying techniques, and extensive literature reviews in numerous geochemical sub-disciplines. Topics covered include: • Theory and Methods of Computational Chemistry • Force Field Application and Development • Computational Spectroscopy • Thermodynamics • Structure Determination  • Geochemical Kinetics This book will be of interest to graduate students and researchers looking to understand geochemical processes on a molecular level. Novice practitioners of molecular modelling, experienced computational chemists, and experimentalists seeking to understand this field will all find information and knowledge of use in their research.

Table of Contents:
List of Contributors xi Preface xiii 1 Introduction to the Theory and Methods of Computational Chemistry 1 David M. Sherman 1.1 Introduction 1 1.2 Essentials of Quantum Mechanics 2 1.2.1 The Schrödinger Equation 4 1.2.2 Fundamental Examples 4 1.3 Multielectronic Atoms 7 1.3.1 The Hartree and Hartree–Fock Approximations 7 1.3.2 Density Functional Theory 13 1.4 Bonding in Molecules and Solids 17 1.4.1 The Born–Oppenheimer Approximation 17 1.4.2 Basis Sets and the Linear Combination of Atomic Orbital Approximation 18 1.4.3 Periodic Boundary Conditions 20 1.4.4 Nuclear Motions and Vibrational Modes 21 1.5 From Quantum Chemistry to Thermodynamics 22 1.5.1 Molecular Dynamics 24 1.6 Available Quantum Chemistry Codes and Their Applications 27 References 28 2 Force Field Application and Development 33 Marco Molinari, Andrey V. Brukhno, Stephen C. Parker, and Dino Spagnoli 2.1 Introduction 33 2.2 Potential Forms 35 2.2.1 The Non-bonded Interactions 35 2.2.2 The Bonded Interactions 37 2.2.3 Polarisation Effects 37 2.2.4 Reactivity 39 2.2.5 Fundamentals of Coarse Graining 40 2.3 Fitting Procedure 42 2.3.1 Combining Rules Between Unlike Species 42 2.3.2 Optimisation Procedures for All-Atom Force Fields 43 2.3.3 Deriving CG Force Fields 45 2.3.4 Accuracy and Limitations of the Fitting 47 2.3.5 Transferability 48 2.4 Force Field Libraries 48 2.4.1 General Force Fields 48 2.4.2 Force Field Libraries for Organics: Biomolecules with Minerals 49 2.4.3 Potentials for the Aqueous Environment 50 2.4.4 Current CGFF Potentials 51 2.4.5 Multi-scale Methodologies 53 2.5 Evolution of Force Fields for Selected Classes of Minerals 54 2.5.1 Calcium Carbonate 54 2.5.2 Clay Minerals 56 2.5.3 Hydroxides and Hydrates 60 2.5.4 Silica and Silicates 60 2.5.5 Iron-Based Minerals 61 2.6 Concluding Remarks 63 References 64 3 Quantum-Mechanical Modeling of Minerals 77 Alessandro Erba and Roberto Dovesi 3.1 Introduction 77 3.2 Theoretical Framework 79 3.2.1 Translation Invariance and Periodic Boundary Conditions 79 3.2.2 HF and KS Methods 80 3.2.3 Bloch Functions and Local BS 81 3.3 Structural Properties 82 3.3.1 P–V Relation Through Analytical Stress Tensor 83 3.3.2 P–V Relation Through Equation of State 85 3.4 Elastic Properties 86 3.4.1 Evaluation of the Elastic Tensor 86 3.4.2 Elastic Tensor-Related Properties 89 3.4.3 Directional Seismic Wave Velocities and Elastic Anisotropy 89 3.5 Vibrational and Thermodynamic Properties 91 3.5.1 Solid-State Thermodynamics 93 3.6 Modeling Solid Solutions 95 3.7 Future Challenges 98 References 99 4 First Principles Estimation of Geochemically Important Transition Metal Oxide Properties: Structure and Dynamics of the Bulk, Surface, and Mineral/Aqueous Fluid Interface 107 Ying Chen, Eric Bylaska, and John Weare 4.1 Introduction 107 4.2 Overview of the Theoretical Methods and Approximations Needed to Perform AIMD Calculations 109 4.3 Accuracy of Calculations for Observable Bulk Properties 113 4.3.1 Bulk Structural Properties 113 4.3.2 Bulk Electronic Structure Properties 118 4.4 Calculation of Surface Properties 123 4.4.1 Surface Structural Properties 123 4.4.2 Electronic Structure in the Surface Region 127 4.4.3 Water Adsorption on Surface 129 4.5 Simulations of the Mineral–Water Interface 130 4.5.1 CPMD Simulations of the Vibrational Structure of the Hematite (012)–Water Interface 130 4.5.2 CPMD Simulations of Fe2+ Species at the Mineral–Water Interface 132 4.6 Future Perspectives 134 Acknowledgments 134 Appendix 134 A.1 Short Introduction to Pseudopotentials 135 A.1.1 The Spin Penalty Pseudopotential 137 A.1.2 Projected Density of States from Pseudo-Atomic Orbitals 138 A.2 Hubbard-Like Coulomb and Exchange (DFT+U) 138 A.3 Overview of the PAW Method 139 References 143 5 Computational Isotope Geochemistry 151 James R. Rustad 5.1 A Brief Statement of Electronic Structure Theory and the Electronic Problem 152 5.2 The Vibrational Eigenvalue Problem 154 5.3 Isotope Exchange Equilibria 156 5.4 Qualitative Insights 159 5.5 Quantitative Estimates 160 5.6 Relationship to Empirical Estimates 169 5.7 Beyond the Harmonic Approximation 171 5.8 Kinetic Isotope Effects 172 5.9 Summary and Prognosis 172 Acknowledgments 173 References 173 6 Organic and Contaminant Geochemistry 177 Daniel Tunega, Martin H. Gerzabek, Georg Haberhauer, Hans Lischka, and Adelia J. A. Aquino 6.1 Introduction 177 6.1.1 Review Examples of Molecular Modeling Applications in Organic and Contaminant Geochemistry 179 6.2 Molecular Modeling Methods 184 6.2.1 Molecular Mechanics: Brief Summary 184 6.2.2 Quantum Mechanics: Overview 187 6.2.3 Molecular Modeling Techniques: Summary 192 6.2.4 Models: Clusters, Periodic Systems, and Environmental Effects 195 6.3 Applications 196 6.3.1 Modeling of Surface Complexes of Polar Phenoxyacetic Acid-Based Herbicides with Iron Oxyhydroxides and Clay Minerals 197 6.3.2 Modeling of Adsorption Processes of Polycyclic Aromatic Hydrocarbons on Iron Oxyhydroxides 217 6.3.3 Modeling of Interactions of Polar and Nonpolar Contaminants in Organic Geochemical Environment 220 6.4 Perspectives and Future Challenges 227 Glossary 229 References 231 7 Petroleum Geochemistry 245 Qisheng Ma and Yongchun Tang 7.1 Introduction: Petroleum Geochemistry and Basin Modeling 245 7.2 Technology Development of the Petroleum Geochemistry 246 7.2.1 Thermal Maturity and Vitrinite Reflectance 246 7.2.2 Rock-Eval Pyrolysis 247 7.2.3 Kerogen Pyrolysis and Gas Chromatography Analysis 248 7.2.4 Kinetic Modeling of Kerogen Pyrolysis 249 7.2.5 Natural Gases and C/H Isotopes 253 7.3 Computational Simulations in Petroleum Geochemistry 253 7.3.1 Ab Initio Calculations of the Unimolecular C–C Bond Rapture 253 7.3.2 Quantum Mechanical Calculations on Natural Gas 13C Isotopic Fractionation 256 7.3.3 Deuterium Isotope Fractionations of Natural Gas 258 7.3.4 Molecular Modeling of the 13C and D Doubly Substituted Methane Isotope 260 7.4 Summary 262 References 262 8 Mineral–Water Interaction 271 Marie-Pierre Gaigeot and Marialore Sulpizi 8.1 Introduction 271 8.2 Brief Review of AIMD Simulation Method 275 8.2.1 Ab Initio Molecular Dynamics and Density Functional Theory 275 8.3 Calculation of the Surface Acidity from Reversible Proton Insertion/Deletion 280 8.4 Theoretical Methodology for Vibrational Spectroscopy and Mode Assignments 282 8.5 Property Calculations from AIMD: Dipoles and Polarisabilities 284 8.6 Illustrations from Our Recent Works 286 8.6.1 Organisation of Water at Silica–Water Interfaces: (0001) α-Quartz Versus Amorphous Silica 286 8.6.2 Organisation of Water at Alumina–Water Interface: (0001) α-Alumina Versus (101) Boehmite 291 8.6.3 How Surface Acidities Dictate the Interfacial Water Structural Arrangement 293 8.6.4 Vibrational Spectroscopy at Oxide–Liquid Water Interfaces 295 8.6.5 Clay–Water Interface: Pyrophyllite and Calcium Silicate 299 8.7 Some Perspectives for Future Works 302 References 304 9 Biogeochemistry 311 Weilong Zhao, Zhijun Xu, and Nita Sahai 9.1 Introduction 311 9.1.1 Mineral–Water Interactions 313 9.1.2 Mineral–Organic Interactions 313 9.2 Challenges and Approaches to Computational Modeling of Biomineralization 314 9.2.1 Biominerals: Structure, Nucleation, and Growth 314 9.2.2 Conformational Sampling in Modeling Biomineralization 317 9.2.3 Force Field Benchmarking 324 9.2.4 Ab Initio MD and Hybrid QM/MM Approaches 325 9.3 Case Studies 326 9.3.1 Apatite 327 9.3.2 Calcite 331 9.4 Concluding Remarks and Future Perspectives 334 Acknowledgments 335 References 335 10 Vibrational Spectroscopy of Minerals Through Ab Initio Methods 341 Marco De La Pierre, Raffaella Demichelis, and Roberto Dovesi 10.1 Introduction 341 10.2 Theoretical Background and Methods 342 10.2.1 Calculation of Vibrational Frequencies 344 10.2.2 Splitting of the Longitudinal Optical (LO) and Transverse Optical (TO) Modes 346 10.2.3 Calculation of Infrared (IR) and Raman Peak Intensities and of the IR Dielectric Function 347 10.2.4 Estimation of the Anharmonic Constant for X–H Stretching Modes 349 10.2.5 Accuracy of Basis Set and Hamiltonian 350 10.3 Examples and Applications 352 10.3.1 Vibrational Properties of Calcium and Magnesium Carbonates 353 10.3.2 A Complex Mineral: The IR Spectra of Ortho-enstatite 359 10.3.3 Treatment of the O─H Stretching Modes: The Vibrational Spectra of Brucite and Diaspore 360 10.4 Simulation of Vibrational Properties for Crystal Structure Determination 363 10.4.1 Proton Disorder in γ-AlOOH Boehmite 364 10.5 Future Challenges 368 Acknowledgements 368 References 368 11 Geochemical Kinetics via Computational Chemistry 375 James D. Kubicki and Kevin M. Rosso 11.1 Introduction 375 11.2 Methods 379 11.2.1 Potential Energy Surfaces 379 11.2.2 Choice of Solvation Methods 384 11.2.3 Activation Energies and Volumes 386 11.2.4 Transition States and Imaginary Frequencies 390 11.2.5 Rate Constants 391 11.2.6 Types of Reaction Mechanisms 393 11.3 Applications 394 11.3.1 Diffusion 394 11.3.2 Ligand Exchange Aqueous Complexes 395 11.3.3 Adsorption 396 11.3.4 Dissolution 396 11.3.5 Nucleation 398 11.4 Future Challenges 399 11.4.1 Femtosecond Spectroscopy 399 11.4.2 H-Bonding 400 11.4.3 Roaming 400 11.4.4 Large-Scale Quantum Molecular Dynamics 401 11.4.5 Reactive Force Fields 401 References 403 Index 415


Best Sellers


Product Details
  • ISBN-13: 9781118845080
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 252 mm
  • No of Pages: 440
  • Returnable: N
  • Sub Title: An Introduction
  • Width: 196 mm
  • ISBN-10: 1118845080
  • Publisher Date: 08 Jul 2016
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 25 mm
  • Weight: 1129 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Molecular Modeling of Geochemical Reactions: An Introduction
John Wiley & Sons Inc -
Molecular Modeling of Geochemical Reactions: An Introduction
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Molecular Modeling of Geochemical Reactions: An Introduction

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!