Modern Operating Systems
Home > Computing and Information Technology > Operating systems > Modern Operating Systems
Modern Operating Systems

Modern Operating Systems

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

Modern Operating Systems, Fourth Edition, is intended for introductory courses in Operating Systems in Computer Science, Computer Engineering, and Electrical Engineering programs. It also serves as a useful reference for OS professionals ¿ The widely anticipated revision of this worldwide best-seller incorporates the latest developments in operating systems (OS) technologies. The Fourth Edition includes up-to-date materials on relevant¿OS. Tanenbaum also provides information on current research based on his experience as an operating systems researcher. ¿ Modern Operating Systems, Third Editionwas the recipient of the 2010 McGuffey Longevity Award. The McGuffey Longevity Award recognizes textbooks whose excellence has been demonstrated over time.¿http://taaonline.net/index.html ¿¿ Teaching and Learning Experience This program will provide a better teaching and learning experience–for you and your students. It will help: ¿ Provide Practical Detail on the Big Picture Concepts: A clear and entertaining writing style outlines the concepts every OS designer needs to master. Keep Your Course Current: This edition includes information on the latest OS technologies and developments Enhance Learning with Student and Instructor Resources: Students will gain hands-on experience using the simulation exercises and lab experiments.

Table of Contents:
Brief Contents CHAPTER 1 "INTRODUCTION" 1.1 WHAT IS AN OPERATING SYSTEM? 1.1.1 The Operating System as an Extended Machine 1.1.2 The Operating System as a Resource Manager 1.2 HISTORY OF OPERATING SYSTEMS 1.2.1 The First Generation (1945-55): Vacuum Tubes 1.2.2 The Second Generation (1955-65): Transistors and Batch Systems 1.2.3 The Third Generation (1965-1980): ICs and Multiprogramming 1.2.4 The Fourth Generation (1980-Present): Personal Computers 1.2.5 The Fifth Generation (1990-Present): Mobile Computers 1.3 COMPUTER HARDWARE REVIEW 1.3.1 Processors 1.3.2 Memory 1.3.3 Disks 1.3.4 I/O Devices 1.3.5 Buses 1.3.6 Booting the Computer 1.4 THE OPERATING SYSTEM ZOO 1.4.1 Mainframe Operating Systems 1.4.2 Server Operating Systems 1.4.3 Multiprocessor Operating Systems 1.4.4 Personal Computer Operating Systems 1.4.5 Handheld Computer Operating Systems 1.4.6 Embedded Operating Systems. 1.4.7 Sensor-Node Operating Systems 1.4.8 Real-Time Operating Systems 1.4.9 Smart Card Operating Systems 1.5 OPERATING SYSTEM CONCEPTS 1.5.1 Processes 1.5.2 Address Spaces 1.5.3 Files 1.5.4 Input/Output 1.5.5 Protection 1.5.6 The Shell 1.5.7 Ontogeny Recapitulates Phylogeny 1.6 SYSTEM CALLS 1.6.1 System Calls for Process Management 1.6.2 System Calls for File Management 1.6.3 System Calls for Directory Management 1.6.4 Miscellaneous System Calls 1.6.5 The Windows Win32 API 1.7 OPERATING SYSTEM STRUCTURE 1.7.1 Monolithic Systems 1.7.2 Layered Systems 1.7.3 Microkernels 1.7.4 Client-Server Model 1.7.5 Virtual Machines 1.7.6 Exokernels 1.8 THE WORLD ACCORDING TO C 1.8.1 The C Language 1.8.2 Header Files 1.8.3 Large Programming Projects 1.8.4 The Model of Run Time 1.9 RESEARCH ON OPERATING SYSTEMS 1.10 OUTLINE OF THE REST OF THIS BOOK 1.11 METRIC UNITS 1.12 SUMMARY CHAPTER 2 "PROCESSES AND THREADS" 2.1 PROCESSES 2.1.1 The Process Model 2.1.2 Process Creation 2.1.3 Process Termination 2.1.4 Process Hierarchies 2.1.5 Process States 2.1.6 Implementation of Processes 2.1.7 Modeling Multiprogramming 2.2 THREADS 2.2.1 Thread Usage 2.2.2 The Classical Thread Model 2.2.3 POSIX Threads 2.2.4 Implementing Threads in User Space 2.2.5 Implementing Threads in the Kernel 2.2.6 Hybrid Implementations 2.2.7 Scheduler Activations 2.2.8 Pop-Up Threads 2.2.9 Making Single-Threaded Code Multithreaded 2.3 INTERPROCESS COMMUNICATION 2.3.1 Race Conditions 2.3.2 Critical Regions 2.3.3 Mutual Exclusion with Busy Waiting 2.3.4 Sleep and Wakeup 2.3.5 Semaphores 2.3.6 Mutexes 2.3.7 Monitors 2.3.8 Message Passing 2.3.9 Barriers 2.3.10 Avoiding Locks: Read-Copy-Update 2.4 SCHEDULING 2.4.1 Introduction to Scheduling 2.4.2 Scheduling in Batch Systems 2.4.3 Scheduling in Interactive Systems 2.4.4 Scheduling in Real-Time Systems 2.4.5 Policy Versus Mechanism 2.4.6 Thread Scheduling 2.5 CLASSICAL IPC PROBLEMS 2.5.1 The Dining Philosophers Problem 2.5.2 The Readers and Writers Problem 2.6 RESEARCH ON PROCESSES AND THREADS 2.7 SUMMARY CHAPTER 3 "MEMORY MANAGEMENT" 3.1 NO MEMORY ABSTRACTION 3.2 A MEMORY ABSTRACTION: ADDRESS SPACES 3.2.1 The Notion of an Address Space 3.2.2 Swapping 3.2.3 Managing Free Memory 3.3 VIRTUAL MEMORY 3.3.1 Paging 3.3.2 Page Tables 3.3.3 Speeding Up Paging 3.3.4 Page Tables for Large Memories 3.4 PAGE REPLACEMENT ALGORITHMS 3.4.1 The Optimal Page Replacement Algorithm 3.4.2 The Not Recently Used Page Replacement Algorithm 3.4.3 The First-In, First-Out (FIFO) Page Replacement Algorithm 3.4.4 The Second-Chance Page Replacement Algorithm 3.4.5 The Clock Page Replacement Algorithm 3.4.6 The Least Recently Used (LRU) Page Replacement Algorithm 3.4.7 Simulating LRU in Software 3.4.8 The Working Set Page Replacement Algorithm 3.4.9 The WSClock Page Replacement Algorithm 3.4.10 Summary of Page Replacement Algorithms 3.5 DESIGN ISSUES FOR PAGING SYSTEMS 3.5.1 Local versus Global Allocation Policies 3.5.2 Load Control 3.5.3 Page Size 3.5.4 Separate Instruction and Data Spaces 3.5.5 Shared Pages 3.5.6 Shared Libraries 3.5.7 Mapped Files 3.5.8 Cleaning Policy 3.5.9 Virtual Memory Interface 3.6 IMPLEMENTATION ISSUES 3.6.1 Operating System Involvement with Paging 3.6.2 Page Fault Handling 3.6.3 Instruction Backup 3.6.4 Locking Pages in Memory 3.6.5 Backing Store 3.6.6 Separation of Policy and Mechanism 3.7 SEGMENTATION 3.7.1 Implementation of Pure Segmentation 3.7.2 Segmentation with Paging: MULTICS 3.7.3 Segmentation with Paging: The Intel x86 3.8 RESEARCH ON MEMORY MANAGEMENT 3.9 SUMMARY CHAPTER 4 "FILE SYSTEMS" 4.1 FILES 4.1.1 File Naming 4.1.2 File Structure 4.1.3 File Types 4.1.4 File Access 4.1.5 File Attributes 4.1.6 File Operations 4.1.7 An Example Program Using File-System Calls 4.2 DIRECTORIES 4.2.1 Single-Level Directory Systems 4.2.2 Hierarchical Directory Systems 4.2.3 Path Names 4.2.4 Directory Operations 4.3 FILE SYSTEM IMPLEMENTATION 4.3.1 File-System Layout 4.3.2 Implementing Files 4.3.3 Implementing Directories 4.3.4 Shared Files 4.3.5 Log-Structured File Systems 4.3.6 Journaling File Systems 4.3.7 Virtual File Systems 4.4 FILE-SYSTEM MANAGEMENT AND OPTIMIZATION 4.4.1 Disk-Space Management 4.4.2 File-System Backups 4.4.3 File-System Consistency 4.4.4 File-System Performance 4.4.5 Defragmenting Disks 4.5 EXAMPLE FILE SYSTEMS 4.5.1 The MS-DOS File System 4.5.2 The UNIX V7 File System 4.5.3 CD-ROM File Systems 4.6 RESEARCH ON FILE SYSTEMS 4.7 SUMMARY CHAPTER 5 "INPUT/OUTPUT" 5.1 PRINCIPLES OF I/O HARDWARE 5.1.1 I/O Devices 5.1.2 Device Controllers 5.1.3 Memory-Mapped I/O 5.1.4 Direct Memory Access 5.1.5 Interrupts Revisited 5.2 PRINCIPLES OF I/O SOFTWARE 5.2.1 Goals of the I/O Software 5.2.2 Programmed I/O 5.2.3 Interrupt-Driven I/O 5.2.4 I/O Using DMA 5.3 I/O SOFTWARE LAYERS 5.3.1 Interrupt Handlers 5.3.2 Device Drivers 5.3.3 Device-Independent I/O Software 5.3.4 User-Space I/O Software 5.4 DISKS 5.4.1 Disk Hardware 5.4.2 Disk Formatting 5.4.3 Disk Arm Scheduling Algorithms 5.4.4 Error Handling 5.4.5 Stable Storage 5.5 CLOCKS 5.5.1 Clock Hardware 5.5.2 Clock Software 5.5.3 Soft Timers 5.6 USER INTERFACES: KEYBOARD, MOUSE, MONITOR 5.6.1 Input Software 5.6.2 Output Software 5.7 THIN CLIENTS 5.8 POWER MANAGEMENT 5.8.1 Hardware Issues 5.8.2 Operating System Issues 5.8.3 Application Program Issues 5.9 RESEARCH ON INPUT/OUTPUT 5.10 SUMMARY CHAPTER 6 "DEADLOCKS" 6.1 RESOURCES 6.1.1 Preemptable and Nonpreemptable Resources 6.1.2 Resource Acquisition 6.2 INTRODUCTION TO DEADLOCKS 6.2.1 Conditions for Resource Deadlocks 6.2.2 Deadlock Modeling 6.3 THE OSTRICH ALGORITHM 6.4 DEADLOCK DETECTION AND RECOVERY 6.4.1 Deadlock Detection with One Resource of Each Type 6.4.2 Deadlock Detection with Multiple Resources of Each Type 6.4.3 Recovery from Deadlock 6.5 DEADLOCK AVOIDANCE 6.5.1 Resource Trajectories 6.5.2 Safe and Unsafe States 6.5.3 The Banker's Algorithm for a Single Resource 6.5.4 The Banker's Algorithm for Multiple Resources 6.6 DEADLOCK PREVENTION 6.6.1 Attacking the Mutual Exclusion Condition 6.6.2 Attacking the Hold and Wait Condition 6.6.3 Attacking the No Preemption Condition 6.6.4 Attacking the Circular Wait Condition 6.7 OTHER ISSUES 6.7.1 Two-Phase Locking 6.7.2 Communication Deadlocks 6.7.3 Livelock 6.7.4 Starvation 6.8 RESEARCH ON DEADLOCKS 6.9 SUMMARY CHAPTER 7 "VIRTUALIZATION AND THE CLOUD" 7.1 HISTORY 7.2 REQUIREMENTS FOR VIRTUALIZATION 7.3 TYPE 1 AND TYPE 2 HYPERVISORS 7.4 TECHNIQUES FOR EFFICIENT VIRTUALIZATION 7.4.1 Virtualizing the Unvirtualizable 7.4.2 The Cost of Virtualization 7.5 ARE HYPERVISORS MICROKERNELS DONE RIGHT? 7.6 MEMORY VIRTUALIZATION 7.7 I/O VIRTUALIZATION 7.8 VIRTUAL APPLIANCES 7.9 VIRTUAL MACHINES ON MULTICORE CPUS 7.10 LICENSING ISSUES 7.11 CLOUDS 7.11.1 Clouds as a Service 7.11.2 Virtual Machine Migration 7.11.3 Checkpointing 7.12 CASE STUDY: VMWARE 7.12.1 The early history of VMware 7.12.2 VMware Workstation 7.12.3 Challenges in Bringing Virtualization to the x86 7.12.4 VMware Workstation: Solution Overview 7.12.5 The Evolution of VMware Workstation 7.12.6 ESX Server: VMware's type-1 hypervisor 7.13 RESEARCH ON VIRTUALIZATION AND THE CLOUD CHAPTER 8 "MULTIPLE PROCESSOR SYSTEMS" 8.1 MULTIPROCESSORS 8.1.1 Multiprocessor Hardware 8.1.2 Multiprocessor Operating System Types 8.1.3 Multiprocessor Synchronization 8.1.4 Multiprocessor Scheduling 8.2 MULTICOMPUTERS 8.2.1 Multicomputer Hardware 8.2.2 Low-Level Communication Software 8.2.3 User-Level Communication Software 8.2.4 Remote Procedure Call 8.2.5 Distributed Shared Memory 8.2.6 Multicomputer Scheduling 8.2.7 Load Balancing 8.3 DISTRIBUTED SYSTEMS 8.3.1 Network Hardware 8.3.2 Network Services and Protocols 8.3.3 Document-Based Middleware 8.3.4 File-System-Based Middleware 8.3.5 Object-Based Middleware 8.3.6 Coordination-Based Middleware 8.4 RESEARCH ON MULTIPLE PROCESSOR SYSTEMS 8.5 SUMMARY CHAPTER 9 "SECURITY" 9.1 THE SECURITY ENVIRONMENT 9.1.1 Threats 9.1.2 Attackers 9.2 OPERATING SYSTEMS SECURITY 9.2.1 Can We Build Secure Systems? 9.2.2 Trusted Computing Base 9.3 CONTROLLING ACCESS TO RESOURCES 9.3.1 Protection Domains 9.3.2 Access Control Lists 9.3.3 Capabilities 9.4 FORMAL MODELS OF SECURE SYSTEMS 9.4.1 Multilevel Security 9.4.2 Covert Channels 9.5 BASICS OF CRYPTOGRAPHY 9.5.1 Secret-Key Cryptography 9.5.2 Public-Key Cryptography 9.5.3 One-Way Functions 9.5.4 Digital Signatures 9.5.5 Trusted Platform Module 9.6 AUTHENTICATION 9.6.1 Authentication Using a Physical Object 9.6.2 Authentication Using Biometrics 9.7 EXPLOITING SOFTWARE 9.7.1 Buffer Overflow Attacks 9.7.2 Format String Attacks 9.7.3 Dangling Pointers 9.7.4 Null Pointer Dereference Attacks 9.7.5 Integer Overflow Attacks 9.7.6 Command Injection Attacks 9.7.7 Time of Check to Time of Use (TOCTOU) Attacks 9.8 INSIDER ATTACKS 9.8.1 Logic Bombs 9.8.2 Back Doors 9.8.3 Login Spoofing 9.9 MALWARE 9.9.1 Trojan Horses 9.9.2 Viruses 9.9.3 Worms 9.9.4 Spyware 9.9.5 Rootkits 9.10 DEFENSES 9.10.1 Firewalls 9.10.2 Antivirus and Anti-Antivirus Techniques 9.10.3 Code Signing 9.10.4 Jailing 9.10.5 Model-Based Intrusion Detection 9.10.6 Encapsulating Mobile Code 9.10.7 Java Security 9.11 RESEARCH ON SECURITY 9.12 SUMMARY CHAPTER 10 "CASE STUDY 1: UNIX, LINUX, AND ANDROID" 10.1 HISTORY OF UNIX AND LINUX 10.1.1 UNICS 10.1.2 PDP-11 UNIX 10.1.3 Portable UNIX 10.1.4 Berkeley UNIX 10.1.5 Standard UNIX 10.1.6 MINIX 10.1.7 Linux 10.2 OVERVIEW OF LINUX 10.2.1 Linux Goals 10.2.2 Interfaces to Linux 10.2.3 The Shell 10.2.4 Linux Utility Programs 10.2.5 Kernel Structure 10.3 PROCESSES IN LINUX 10.3.1 Fundamental Concepts 10.3.2 Process Management System Calls in Linux 10.3.3 Implementation of Processes and Threads in Linux 10.3.4 Scheduling in Linux 10.3.5 Booting Linux 10.4 MEMORY MANAGEMENT IN LINUX 10.4.1 Fundamental Concepts 10.4.2 Memory Management System Calls in Linux 10.4.3 Implementation of Memory Management in Linux 10.4.4 Paging in Linux 10.5 INPUT/OUTPUT IN LINUX 10.5.1 Fundamental Concepts 10.5.2 Networking 10.5.3 Input/Output System Calls in Linux 10.5.4 Implementation of Input/Output in Linux 10.5.5 Modules in Linux 10.6 THE LINUX FILE SYSTEM 10.6.1 Fundamental Concepts 10.6.2 File System Calls in Linux 10.6.3 Implementation of the Linux File System 10.6.4 NFS: The Network File System 10.7 SECURITY IN LINUX 10.7.1 Fundamental Concepts 10.7.2 Security System Calls in Linux 10.7.3 Implementation of Security in Linux 10.8 ANDROID 10.9 SUMMARY CHAPTER 11 "CASE STUDY 2: WINDOWS 8" 11.1 HISTORY OF WINDOWS THROUGH WINDOWS 8.1 11.1.1 1980s: MS-DOS 11.1.2 1990s: MS-DOS-based Windows 11.1.3 2000s: NT-based Windows 11.1.4 Windows Vista 11.1.5 2010s: Modern Windows 11.2 PROGRAMMING WINDOWS 11.2.1 The Native NT Application Programming Interface 11.2.2 The Win32 Application Programming Interface 11.2.3 The Windows Registry 11.3 SYSTEM STRUCTURE 11.3.1 Operating System Structure 11.3.2 Booting Windows 11.3.3 Implementation of the Object Manager 11.3.4 Subsystems, DLLs, and User-Mode Services 11.4 PROCESSES AND THREADS IN WINDOWS 11.4.1 Fundamental Concepts 11.4.2 Job, Process, Thread, and Fiber Management API Calls 11.4.3 Implementation of Processes and Threads 11.5 MEMORY MANAGEMENT 11.5.1 Fundamental Concepts 11.5.2 Memory Management System Calls 11.5.3 Implemen


Best Sellers


Product Details
  • ISBN-13: 9780133591620
  • Publisher: Pearson Education (US)
  • Publisher Imprint: Pearson
  • Height: 10 mm
  • No of Pages: 1136
  • Spine Width: 10 mm
  • Width: 10 mm
  • ISBN-10: 013359162X
  • Publisher Date: 18 Sep 2014
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Weight: 1490 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Modern Operating Systems
Pearson Education (US) -
Modern Operating Systems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Modern Operating Systems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!