Modeling Power Electronics and Interfacing Energy Conversion Systems
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Modeling Power Electronics and Interfacing Energy Conversion Systems
Modeling Power Electronics and Interfacing Energy Conversion Systems

Modeling Power Electronics and Interfacing Energy Conversion Systems

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy  This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work. Discusses the mathematical formulation of system equations for energy systems and power electronics aiming state-space and circuit oriented simulations Studies the interactions between MATLAB and Simulink models and functions with real-world implementation using microprocessors and microcontrollers Presents numerical integration techniques, transfer-function modeling, harmonic analysis and power quality performance assessment Examines existing software such as, MATLAB/Simulink, Power Systems Toolbox and PSIM to simulate power electronic circuits including the use of renewable energy sources such as wind and solar sources The simulation files are available for readers who register with the Google Group: power-electronics-interfacing-energy-conversion-systems@googlegroups.com. After your registration you will receive information in how to access the simulation files, the Google Group can also be used to communicate with other registered readers of this book.

Table of Contents:
Foreword xi Preface xiii 1 Introduction to Electrical Engineering Simulation 1 1.1 Fundamentals of State-Space-Based Modeling 4 1.2 Example of Modeling an Electrical Network 6 1.3 Transfer Function 9 1.3.1 State Space to Transfer Function Conversion 10 1.4 Modeling and Simulation of Energy Systems and Power Electronics 12 1.5 Suggested Problems 18 Further Reading 25 2 Analysis of Electrical Circuits with Mesh and Nodal Analysis 27 2.1 Introduction 27 2.2 Solution of Matrix Equations 28 2.3 Laboratory Project : Mesh and Nodal Analysis of Electrical Circuits with Superposition Theorem 29 2.4 Suggested Problems 37 References 40 Further Reading 40 3 Modeling and Analysis of Electrical Circuits with Block Diagrams 43 3.1 Introduction 43 3.2 Laboratory Project: Transient Response Study and Laplace Transform-Based Analysis Block Diagram Simulation 45 3.3 Comparison with Phasor-Based Steady-State Analysis 52 3.4 Finding the Equivalent Thèvenin 54 3.5 Suggested Problems 56 Further Reading 58 4 Power Electronics: Electrical Circuit-Oriented Simulation 61 4.1 Introduction 61 4.2 Case Study: Half-Wave Rectifier 67 4.3 Laboratory Project: Electrical Circuit Simulation Using PSIM and Simscape Power Systems MATLAB Analysis 72 4.4 Suggested Problems 79 Further Reading 81 5 Designing Power Electronic Control Systems 83 5.1 Introduction 83 5.1.1 Control System Design 85 5.1.2 Proportional–Integral Closed-Loop Control 86 5.2 Laboratory Project: Design of a DC/DC Boost Converter Control 89 5.2.1 Ideal Boost Converter 89 5.2.2 Small Signal Model and Deriving the Transfer Function of Boost Converter 90 5.2.3 Control Block Diagram and Transfer Function 93 5.3 Design of a Type III Compensated Error Amplifier 95 5.3.1 K Method 95 5.3.2 Poles and Zeros Placement in the Type III Amplifier 96 5.4 Controller Design 97 5.5 PSIM Simulation Studies for the DC/DC Boost Converter 99 5.6 Boost Converter: Average Model 99 5.7 Full Circuit for the DC/DC Boost Converter 103 5.8 Laboratory Project: Design of a Discrete Control in MATLAB Corunning with a DC Motor Model in Simulink 107 5.9 Suggested Problems 112 References 116 Further Reading 116 6 Instrumentation and Control Interfaces for Energy Systems and Power Electronics 117 6.1 Introduction 117 6.1.1 Sensors and Transducers for Power Systems Data Acquisition 118 6.2 Passive Electrical Sensors 119 6.2.1 Resistive Sensors 119 6.2.2 Capacitive Sensors 121 6.2.3 Inductive Sensors 123 6.3 Electronic Interface for Computational Data in Power Systems and Instrumentation 125 6.3.1 O perational Amplifiers 125 6.4 Analog Amplifiers for Data Acquisition and Power System Driving 125 6.4.1 Level Detector or Comparator 126 6.4.2 Standard Differential Amplifier for Instrumentation and Control 127 6.4.3 O ptically Isolated Amplifier 128 6.4.4 The V–I Converter of a Single Input and Floating Load 130 6.4.5 Schmitt Trigger Comparator 131 6.4.6 Voltage-Controlled Oscillator (VCO) 131 6.4.7 Phase Shifting 131 6.4.8 Precision Diode, Precision Rectifier, and the Absolute Value Amplifier 134 6.4.9 High-Gain Amplifier with Low-Value Resistors 136 6.4.10 Class B Feedback Push–Pull Amplifiers 137 6.4.11 Triangular Waveform Generator 137 6.4.12 Sinusoidal Pulse Width Modulation (PWM) 138 6.5 Laboratory Project: Design a PWM Controller with Error Amplifier 140 6.6 Suggested Problems 140 References 145 7 Modeling Electrical Machines 147 7.1 Introduction to Modeling Electrical Machines 147 7.2 Equivalent Circuit of a Linear Induction Machine Connected to the Network 148 7.3 PSIM Block of a Linear IM Connected to the Distribution Network 150 7.4 PSIM Saturated IM Model Connected to the Distribution Network 152 7.5 Doubly Fed Induction Machine Connected to the Distribution Network 154 7.6 DC Motor Powering the Shaft of a Self-Excited Induction Generator 156 7.7 Modeling a Permanent Magnet Synchronous Machine (PMSM) 158 7.8 Modeling a Saturated Transformer 158 7.9 Laboratory Project: Transient Response of a Single-Phase Nonideal Transformer for Three Types of Power Supply—Sinusoidal, Square Wave, and SPWM 158 7.10 Suggested Problems 169 References 175 Further Reading 175 8 Stand-Alone and Grid-Connected Inverters 177 8.1 Introduction 177 8.2 Constant Current Control 181 8.3 Constant P–Q Control 182 8.4 Constant P–V Control 183 8.5 IEEE 1547 and Associated Controls 184 8.6 P+Resonant Stationary Frame Control 187 8.7 Phase-Locked Loop (PLL) for Grid Synchronization 188 8.8 Laboratory Project: Simulation of a Grid-Connected/Stand-Alone Inverter 190 8.9 Suggested Problems 197 References 199 Further Reading 201 9 Modeling Alternative Sources of Energy 203 9.1 Electrical Modeling of Alternative Power Plants 203 9.2 Modeling a Photovoltaic Power Plant 204 9.3 Modeling an Induction Generator (IG) 205 9.4 Modeling a SEIG Wind Power Plant 207 9.5 Modeling a DFIG Wind Power Plant 208 9.6 Modeling a PMSG Wind Power Plant 208 9.7 Modeling a Fuel Cell Stack 211 9.8 Modeling a Lead Acid Battery Bank 215 9.9 Modeling an Integrated Power Plant 219 9.10 Suggested Problems 224 References 225 10 Power Quality Analysis 227 10.1 Introduction 227 10.2 Fourier Series 231 10.3 Discrete Fourier Transform for Harmonic Evaluation of Electrical Signals 237 10.3.1 Practical Implementation Issues of DFT Using FFT 237 10.4 Electrical Power and Power Factor Computation for Distorted Conditions 239 10.5 Laboratory Project: Design of a DFT-Based Electrical Power Evaluation Function in MATLAB 242 10.6 Suggested Problems 250 References 253 Further Reading 253 11 From PSIM Simulation to Hardware Implementation in DSP 255 Hua Jin 11.1 Introduction 255 11.2 PSIM Overview 255 11.3 From Analog Control to Digital Control 257 11.4 Automatic Code Generation in PSIM 264 11.4.1 TI F28335 DSP Peripheral Blocks 265 11.4.2 Adding DSP Peripheral Blocks 266 11.4.3 Defining SCI Blocks for Real-Time Monitoring and Debugging 271 11.5 PIL Simulation with PSIM 272 11.6 Conclusion 275 References 278 Further Reading 278 12 Digital Processing Techniques applied to Power Electronics 279 Danilo Iglesias Brandão and Fernando Pinhabel Marafão 12.1 Introduction 279 12.2 Basic Digital Processing Techniques 280 12.2.1 Instantaneous and Discrete Signal Calculations 280 12.2.2 Derivative and Integral Value Calculation 280 12.2.3 Moving Average Filter 282 12.2.4 Laboratory Project: Active Current Calculation 286 12.3 Fundamental Component Identification 287 12.3.1 IIR Filter 288 12.3.2 FIR Filter 290 12.3.3 Laboratory Project: THD Calculation 291 12.4 Fortescue’s Sequence Components Identification 293 12.4.1 Sequence Component Identification Using IIR Filter 296 12.4.2 Sequence Component Identification Using DCT Filter 297 12.4.3 Laboratory Project: Calculation of Negative- and Zero-Sequence Factors 298 12.5 Natural Reference Frame PLLs 300 12.5.1 Single-Phase PLL 301 12.5.2 Three-Phase PLL 302 12.5.3 Laboratory Project: Single-Phase PLL Implementation 303 12.5.4 Laboratory Project: Fundamental Wave Detector Based on PLL 306 12.6 MPPT Techniques 307 12.6.1 Perturb and Observe 310 12.6.2 Incremental Conductance 310 12.6.3 Beta Technique 312 12.6.4 Laboratory Project: Implementing the IC Technique 312 12.7 Islanding Detection 314 12.7.1 Laboratory Project: Passive Islanding Detection Based on IEEE Std. 1547 315 12.8 Suggested Problems 317 References 319 Index 321


Best Sellers


Product Details
  • ISBN-13: 9781119058267
  • Publisher: John Wiley & Sons Inc
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 28 mm
  • Width: 158 mm
  • ISBN-10: 1119058260
  • Publisher Date: 29 Nov 2016
  • Height: 239 mm
  • No of Pages: 352
  • Returnable: N
  • Weight: 544 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Modeling Power Electronics and Interfacing Energy Conversion Systems
John Wiley & Sons Inc -
Modeling Power Electronics and Interfacing Energy Conversion Systems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Modeling Power Electronics and Interfacing Energy Conversion Systems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!