Methodologies for Knowledge Discovery and Data Mining
Home > Computing and Information Technology > Computer science > Artificial intelligence > Methodologies for Knowledge Discovery and Data Mining: Third Pacific-Asia Conference, PAKDD'99, Beijing, China, April 26-28, 1999, Proceedings
Methodologies for Knowledge Discovery and Data Mining: Third Pacific-Asia Conference, PAKDD'99, Beijing, China, April 26-28, 1999, Proceedings

Methodologies for Knowledge Discovery and Data Mining: Third Pacific-Asia Conference, PAKDD'99, Beijing, China, April 26-28, 1999, Proceedings

|
     0     
5
4
3
2
1




International Edition


About the Book

This volume contains the papers selected for presentation at the Third Paci?c- Asia Conference on Knowledge Discovery and Data Mining (PAKDD-99)held in the Xiangshan Hotel, Beijing, China, April 26-28, 1999. The conference was sp- sored by Tsinghua University, National Science Foundation of China, Chinese Computer Federation, Toshiba Corporation, and NEC Software Chugoku, Ltd. PAKDD-99 provided an international forum for the sharing of original research results and practical development experiences among researchers and application developers from di?erent KDD-related areas such as machine lea- ing, databases, statistics, knowledge acquisition, data visualization, knowled- based systems, soft computing, and high performance computing. It followed the success of PAKDD-97 held in Singapore in 1997 and PAKDD-98 held in A- tralia in 1998 by bringing together participants from universities, industry, and government. PAKDD-99 encouraged both new theory/methodologies and real world - plications, and covered broad and diverse topics in data mining and knowledge discovery. The technical sessions included: Association Rules Mining; Feature Selection and Generation; Mining in Semi, Un-structured Data; Interestingness, Surprisingness, and Exceptions; Rough Sets, Fuzzy Logic, and Neural Networks; Induction, Classi?cation, and Clustering; Causal Model and Graph-Based Me- ods; Visualization; Agent-Based, and Distributed Data Mining; Advanced Topics and New Methodologies. Of the 158 submissions, we accepted 29 regular papers and 37 short papers for presentation at the conference and for publication in this volume. In addition, over 20 papers were accepted for poster presentation.

Table of Contents:
Invited Talks.- KDD as an Enterprise IT Tool: Reality and Agenda.- Computer Assisted Discovery of First Principle Equations from Numeric Data.- Emerging KDD Technology.- Data Mining — a Rough Set Perspective.- Data Mining Techniques for Associations, Clustering and Classification.- Data Mining: Granular Computing Approach.- Rule Extraction from Prediction Models.- Association Rules.- Mining Association Rules on Related Numeric Attributes.- LGen — A Lattice-Based Candidate Set Generation Algorithm for I/O Efficient Association Rule Mining.- Extending the Applicability of Association Rules.- An Efficient Approach for Incremental Association Rule Mining.- Association Rules in Incomplete Databases.- Parallel SQL Based Association Rule Mining on Large Scale PC Cluster: Performance Comparison with Directly Coded C Implementation.- H-Rule Mining in Heterogeneous Databases.- An Improved Definition of Multidimensional Inter-transaction Association Rule.- Incremental Discovering Association Rules: A Concept Lattice Approach.- Feature Selection and Generation.- Induction as Pre-processing.- Stochastic Attribute Selection Committees with Multiple Boosting: Learning More Accurate and More Stable Classifier Committees.- On Information-Theoretic Measures of Attribute Importance.- A Technique of Dynamic Feature Selection Using the Feature Group Mutual Information.- A Data Pre-processing Method Using Association Rules of Attributes for Improving Decision Tree.- Mining in Semi, Un-structured Data.- An Algorithm for Constrained Association Rule Mining in Semi-structured Data.- Incremental Mining of Schema for Semistructured Data.- Discovering Structure from Document Databases.- Combining Forecasts from Multiple Textual Data Sources.- Domain Knowledge Extracting in a Chinese NaturalLanguage Interface to Databases: NChiql.- Interestingness, Surprisingness, and Exceptions.- Evolutionary Hot Spots Data Mining.- Efficient Search of Reliable Exceptions.- Heuristics for Ranking the Interestingness of Discovered Knowledge.- Rough Sets, Fuzzy Logic, and Neural Networks.- Automated Discovery of Plausible Rules Based on Rough Sets and Rough Inclusion.- Discernibility System in Rough Sets.- Automatic Labeling of Self-Organizing Maps: Making a Treasure-Map Reveal Its Secrets.- Neural Network Based Classifiers for a Vast Amount of Data.- Accuracy Tuning on Combinatorial Neural Model.- A Situated Information Articulation Neural Network: VSF Network.- Neural Method for Detection of Complex Patterns in Databases.- Preserve Discovered Linguistic Patterns Valid in Volatility Data Environment.- An Induction Algorithm Based on Fuzzy Logic Programming.- Rule Discovery in Databases with Missing Values Based on Rough Set Model.- Sustainability Knowledge Mining from Human Development Database.- Induction, Classification, and Clustering.- Characterization of Default Knowledge in Ripple Down Rules Method.- Improving the Performance of Boosting for Naive Bayesian Classification.- Convex Hulls in Concept Induction.- Mining Classification Knowledge Based on Cloud Models.- Robust Clusterin of Large Geo-referenced Data Sets.- A Fast Algorithm for Density-Based Clustering in Large Database.- A Lazy Model-Based Algorithm for On-Line Classification.- An Efficient Space-Partitioning Based Algorithm for the K-Means Clustering.- A Fast Clustering Process for Outliers and Remainder Clusters.- Optimising the Distance Metric in the Nearest Neighbour Algorithm on a Real-World Patient Classification Problem.- Classifying Unseen Cases with Many Missing Values.- Study of a Mixed SimilarityMeasure for Classification and Clustering.- Visualization.- Visually Aided Exploration of Interesting Association Rules.- DVIZ: A System for Visualizing Data Mining.- Causal Model and Graph-Based Methods.- A Minimal Causal Model Learner.- Efficient Graph-Based Algorithm for Discovering and Maintaining Knowledge in Large Databases.- Basket Analysis for Graph Structured Data.- The Evolution of Causal Models: A Comparison of Bayesian Metrics and Structure Priors.- KD-FGS: A Knowledge Discovery System from Graph Data Using Formal Graph System.- Agent-Based, and Distributed Data Mining.- Probing Knowledge in Distributed Data Mining.- Discovery of Equations and the Shared Operational Semantics in Distributed Autonomous Databases.- The Data-Mining and the Technology of Agents to Fight the Illicit Electronic Messages.- Knowledge Discovery in SportsFinder: An Agent to Extract Sports Results from the Web.- Event Mining with Event Processing Networks.- Advanced Topics and New Methodologies.- An Analysis of Quantitative Measures Associated with Rules.- A Strong Relevant Logic Model of Epistemic Processes in Scientific Discovery.- Discovering Conceptual Differences among Different People via Diverse Structures.- Ordered Estimation of Missing Values.- Prediction Rule Discovery Based on Dynamic Bias Selection.- Discretization of Continuous Attributes for Learning Classification Rules.- BRRA: A Based Relevant Rectangles Algorithm for Mining Relationships in Databases.- Mining Functional Dependency Rule of Relational Database.- Time-Series Prediction with Cloud Models in DMKD.


Best Sellers


Product Details
  • ISBN-13: 9783540658665
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publisher Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Height: 235 mm
  • No of Pages: 540
  • Returnable: Y
  • Width: 155 mm
  • ISBN-10: 3540658661
  • Publisher Date: 14 Apr 1999
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Sub Title: Third Pacific-Asia Conference, PAKDD'99, Beijing, China, April 26-28, 1999, Proceedings


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Methodologies for Knowledge Discovery and Data Mining: Third Pacific-Asia Conference, PAKDD'99, Beijing, China, April 26-28, 1999, Proceedings
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
Methodologies for Knowledge Discovery and Data Mining: Third Pacific-Asia Conference, PAKDD'99, Beijing, China, April 26-28, 1999, Proceedings
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Methodologies for Knowledge Discovery and Data Mining: Third Pacific-Asia Conference, PAKDD'99, Beijing, China, April 26-28, 1999, Proceedings

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!