Mesoscopic Electronics in Solid State Nanostructures
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Electronic devices and materials > Mesoscopic Electronics in Solid State Nanostructures
Mesoscopic Electronics in Solid State Nanostructures

Mesoscopic Electronics in Solid State Nanostructures

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

This text treats electronic transport in the regime where conventional textbook models are no longer applicable, including the effect of electronic phase coherence, energy quantization and single-electron charging. The book also provides an overview of semiconductor processing technologies and experimental techniques. With a number of examples and problems with solutions, this is an ideal introduction for students and beginning researchers in the field. "This book is a useful tool also for the experienced researcher to get a summary about recent developments in solid state nanostructures. I applaud the author for a marvelous contribution to the scientific community of mesoscopic electronics." - Prof. K. Ensslin, Solid State Physics Laboratory, ETH Zurich.

Table of Contents:
1. Introduction. 1.1 Preliminary remarks. 1.2 Mesoscopic transport. 1.2.1 Ballistic transport. 1.2.2 The quantum Hall effect and Shubnikov -- de Haas oscillations. 1.2.3 Size quantization. 1.2.4 Phase coherence. 1.2.5 Single electron tunnelling and quantum dots. 1.2.6 Superlattices. 1.2.7 Samples and experimental techniques. 2 An Update of Solid State Physics. 2.1 Crystal structures. 2.2 Electronic energy bands. 2.3 Occupation of energy bands. 2.3.1 The electronic density of states. 2.3.2 Occupation probability and chemical potential. 2.3.3 Intrinsic carrier concentration. 2.4 Envelope wave functions. 2.5 Doping. 2.6 Diffusive transport and the Boltzmann equation. 2.6.1 The Boltzmann equation. 2.6.2 The conductance predicted by the simplified Boltzmann equation. 2.6.3 The magneto--resistivity tensor. 2.7 Scattering mechanisms. 2.8 Screening. 3 Surfaces, Interfaces, and Layered Devices. 3.1 Electronic surface states. 3.1.1 Surface states in one dimension. 3.1.2 Surfaces of 3--dimensional crystals. 3.1.3 Band bending and Fermi level pinning. 3.2 Semiconductor--metal interfaces. 3.2.1 Band alignment and Schottky barriers. 3.2.2 Ohmic contacts. 3.3 Semiconductor heterointerfaces. 3.4 Field effect transistors and quantum wells. 3.4.1 The silicon metal--oxide--semiconductor FET (Si--MOSFET). 3.4.2 The Ga[Al]As high electron mobility transistor (GaAs--HEMT). 3.4.3 Other types of layered devices. 3.4.4 Quantum confined carriers in comparison to bulk carriers. 4 Experimental Techniques. 4.1 Sample fabrication. 4.1.1 Single crystal growth. 4.1.2 Growth of layered structures. 4.1.3 Lateral patterning. 4.1.4 Metallization. 4.1.5 Bonding. 4.2 Elements of cryogenics. 4.2.1 Properties of liquid helium. 4.2.2 Helium cryostats. 4.3 Electronic measurements on nanostructures. 4.3.1 Sample holders. 4.3.2 Application and detection of electronic signals. 5 Important Quantities in Mesoscopic Transport. 6 Magnetotransport Properties of Quantum Films. 6.1 Landau quantization. 6.1.1 2DEGs in perpendicular magnetic fields. 6.1.2 The chemical potential in strong magnetic fields. 6.2 The quantum Hall effect. 6.2.1 Phenomenology. 6.2.2 Origin of the integer quantum Hall effect. 6.2.3 The quantum Hall effect and three dimensions. 6.3 Elementary analysis of Shubnikov--de Haas oscillations. 6.4 Some examples of magnetotransport experiments. 6.4.1 Quasi--two--dimensional electron gases. 6.4.2 Mapping of the probability density. 6.4.3 Displacement of the quantum Hall plateaux. 6.5 Parallel magnetic fields. 7 QuantumWires and Quantum Point Contacts. 7.1 Diffusive quantum wires. 7.1.1 Basic properties. 7.1.2 Boundary scattering. 7.2 Ballistic quantum wires. 7.2.1 Phenomenology. 7.2.2 Conductance quantization in QPCs. 7.2.3 Magnetic field effects. 7.2.4 The "0.7 structure". 7.2.5 Four--probe measurements on ballistic quantum wires. 7.3 The Landauer--B uttiker formalism. 7.3.1 Edge states. 7.3.2 Edge channels. 7.4 Further examples of quantum wires. 7.4.1 Conductance quantization in conventional metals. 7.4.2 Carbon nanotubes. 7.5 Quantum point contact circuits. 7.5.1 Non--ohmic behavior of collinear QPCs. 7.5.2 QPCs in parallel. 7.6 Concluding remarks. 8. Electronic Phase Coherence. 8.1 The Aharonov--Bohm effect in mesoscopic conductors. 8.2 Weak localization. 8.3 Universal conductance fluctuations. 8.4 Phase coherence in ballistic 2DEGs. 8.5 Resonant tunnelling and S -- matrices. 9 Singe Electron Tunnelling. 9.1 The principle of Coulomb blockade. 9.2 Basic single electron tunnelling circuits. 9.2.1 Coulomb blockade at the double barrier. 9.2.2 Current--voltage characteristics: the Coulomb staircase. 9.2.3 The SET transistor. 9.3 SET circuits with many islands; the single electron pump. 10 Quantum Dots. 10.1 Phenomenology of quantum dots. 10.2 The constant interaction model. 10.3 Beyond the constant interaction model. 10.4 Shape of conductance resonances and current--voltage characteristics. 10.5 Other types of quantum dots. 11 Mesoscopic Superlattices. 11.1 One--dimensional superlattices. 11.2 Two--dimensional superlattices. A SI and cgs Units. Appendices. B Correlation and Convolution. B.1 Fourier transformation. B.2 Convolutions. B.3 Correlation functions. C Capacitance Matrix and Electrostatic Energy. D The Transfer Hamiltonian. E Solutions to Selected Exercises. References. Index.


Best Sellers


Product Details
  • ISBN-13: 9783527403752
  • Publisher: Wiley-VCH Verlag GmbH
  • Publisher Imprint: Wiley-VCH Verlag GmbH
  • Height: 248 mm
  • Returnable: N
  • Width: 177 mm
  • ISBN-10: 3527403752
  • Publisher Date: 08 Apr 2003
  • Binding: Hardback
  • Language: English
  • Weight: 798 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Mesoscopic Electronics in Solid State Nanostructures
Wiley-VCH Verlag GmbH -
Mesoscopic Electronics in Solid State Nanostructures
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Mesoscopic Electronics in Solid State Nanostructures

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!