Machine Learning and Data Mining in Pattern Recognition
Home > Computing and Information Technology > Machine Learning and Data Mining in Pattern Recognition: 4th International Conference, MLDM 2005, Leipzig, Germany, July 9-11, 2005, Proceedings
Machine Learning and Data Mining in Pattern Recognition: 4th International Conference, MLDM 2005, Leipzig, Germany, July 9-11, 2005, Proceedings

Machine Learning and Data Mining in Pattern Recognition: 4th International Conference, MLDM 2005, Leipzig, Germany, July 9-11, 2005, Proceedings

|
     0     
5
4
3
2
1




International Edition


About the Book

We met again in front of the statue of Gottfried Wilhelm von Leibniz in the city of Leipzig. Leibniz, a famous son of Leipzig, planned automatic logical inference using symbolic computation, aimed to collate all human knowledge. Today, artificial intelligence deals with large amounts of data and knowledge and finds new information using machine learning and data mining. Machine learning and data mining are irreplaceable subjects and tools for the theory of pattern recognition and in applications of pattern recognition such as bioinformatics and data retrieval. This was the fourth edition of MLDM in Pattern Recognition which is the main event of Technical Committee 17 of the International Association for Pattern Recognition; it started out as a workshop and continued as a conference in 2003. Today, there are many international meetings which are titled “machine learning” and “data mining”, whose topics are text mining, knowledge discovery, and applications. This meeting from the first focused on aspects of machine learning and data mining in pattern recognition problems. We planned to reorganize classical and well-established pattern recognition paradigms from the viewpoints of machine learning and data mining. Though it was a challenging program in the late 1990s, the idea has inspired new starting points in pattern recognition and effects in other areas such as cognitive computer vision.

Table of Contents:
Classification and Model Estimation.- On ECOC as Binary Ensemble Classifiers.- Incremental Classification Rules Based on Association Rules Using Formal Concept Analysis.- Parameter Inference of Cost-Sensitive Boosting Algorithms.- Finite Mixture Models with Negative Components.- MML-Based Approach for Finite Dirichlet Mixture Estimation and Selection.- Principles of Multi-kernel Data Mining.- Neural Methods.- Comparative Analysis of Genetic Algorithm, Simulated Annealing and Cutting Angle Method for Artificial Neural Networks.- Determining Regularization Parameters for Derivative Free Neural Learning.- A Comprehensible SOM-Based Scoring System.- Subspace Methods.- The Convex Subclass Method: Combinatorial Classifier Based on a Family of Convex Sets.- SSC: Statistical Subspace Clustering.- Understanding Patterns with Different Subspace Classification.- Clustering: Basics.- Using Clustering to Learn Distance Functions for Supervised Similarity Assessment.- Linear Manifold Clustering.- Universal Clustering with Regularization in Probabilistic Space.- Acquisition of Concept Descriptions by Conceptual Clustering.- Applications of Clustering.- Clustering Large Dynamic Datasets Using Exemplar Points.- Birds of a Feather Surf Together: Using Clustering Methods to Improve Navigation Prediction from Internet Log Files.- Alarm Clustering for Intrusion Detection Systems in Computer Networks.- Clustering Document Images Using Graph Summaries.- Feature Grouping, Discretization, Selection and Transformation.- Feature Selection Method Using Preferences Aggregation.- Ranked Modelling with Feature Selection Based on the CPL Criterion Functions.- A Grouping Method for Categorical Attributes Having Very Large Number of Values.- Unsupervised Learning of Visual Feature Hierarchies.- Multivariate Discretization by Recursive Supervised Bipartition of Graph.- CorePhrase: Keyphrase Extraction for Document Clustering.- A New Multidimensional Feature Transformation for Linear Classifiers and Its Applications.- Applications in Medicine.- Comparison of FLDA, MLP and SVM in Diagnosis of Lung Nodule.- Diagnosis of Lung Nodule Using Reinforcement Learning and Geometric Measures.- Iris Recognition Algorithm Based on Point Covering of High-Dimensional Space and Neural Network.- Automatic Clinical Image Segmentation Using Pathological Modelling, PCA and SVM.- Improved MRI Mining by Integrating Support Vector Machine Priors in the Bayesian Restoration.- Prediction of Secondary Protein Structure Content from Primary Sequence Alone – A Feature Selection Based Approach.- Alternative Clustering by Utilizing Multi-objective Genetic Algorithm with Linked-List Based Chromosome Encoding.- Time Series and Sequential Pattern Mining.- Embedding Time Series Data for Classification.- Analysis of Time Series of Graphs: Prediction of Node Presence by Means of Decision Tree Learning.- Disjunctive Sequential Patterns on Single Data Sequence and Its Anti-monotonicity.- Mining Expressive Temporal Associations from Complex Data.- Statistical Supports for Frequent Itemsets on Data Streams.- Mining Images in Computer Vision.- Autonomous Vehicle Steering Based on Evaluative Feedback by Reinforcement Learning.- Cost Integration in Multi-step Viewpoint Selection for Object Recognition.- Support Vector Machine Experiments for Road Recognition in High Resolution Images.- An Automatic Face Recognition System in the Near Infrared Spectrum.- Mining Images and Texture.- Hierarchical Partitions for Content Image Retrieval from Large-Scale Database.- Optimising the Choice of Colours of an ImageDatabase for Dichromats.- An Approach to Mining Picture Objects Based on Textual Cues.- Mining Motion from Sequence.- Activity and Motion Detection Based on Measuring Texture Change.- A New Approach to Human Motion Sequence Recognition with Application to Diving Actions.- Dominant Plane Detection Using Optical Flow and Independent Component Analysis.- Speech Analysis.- Neural Expert Model Applied to Phonemes Recognition.- An Evidential Reasoning Approach to Weighted Combination of Classifiers for Word Sense Disambiguation.- Aspects of Data Mining.- Signature-Based Approach for Intrusion Detection.- Discovery of Hidden Correlations in a Local Transaction Database Based on Differences of Correlations.- An Integrated Approach for Mining Meta-rules.- Data Mining on Crash Simulation Data.- Text Mining.- Pattern Mining Across Domain-Specific Text Collections.- Text Classification Using Small Number of Features.- Low-Level Cursive Word Representation Based on Geometric Decomposition.- Special Track: Industrial Applications of Data Mining.- Supervised Evaluation of Dataset Partitions: Advantages and Practice.- Inference on Distributed Data Clustering.- A Novel Approach of Multilevel Positive and Negative Association Rule Mining for Spatial Databases.- Mixture Random Effect Model Based Meta-analysis for Medical Data Mining.- Semantic Analysis of Association Rules via Item Response Theory.- Temporal Approach to Association Rule Mining Using T-Tree and P-Tree.- Aquaculture Feature Extraction from Satellite Image Using Independent Component Analysis.- Modeling the Organoleptic Properties of Matured Wine Distillates.- Bagging Random Trees for Estimation of Tissue Softness.- Concept Mining for Indexing Medical Literature.


Best Sellers


Product Details
  • ISBN-13: 9783540269236
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publisher Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Height: 235 mm
  • No of Pages: 698
  • Returnable: Y
  • Width: 155 mm
  • ISBN-10: 3540269231
  • Publisher Date: 08 Jul 2005
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Sub Title: 4th International Conference, MLDM 2005, Leipzig, Germany, July 9-11, 2005, Proceedings


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning and Data Mining in Pattern Recognition: 4th International Conference, MLDM 2005, Leipzig, Germany, July 9-11, 2005, Proceedings
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
Machine Learning and Data Mining in Pattern Recognition: 4th International Conference, MLDM 2005, Leipzig, Germany, July 9-11, 2005, Proceedings
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning and Data Mining in Pattern Recognition: 4th International Conference, MLDM 2005, Leipzig, Germany, July 9-11, 2005, Proceedings

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!