Large-Scale Inverse Problems and Quantification of Uncertainty
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Large-Scale Inverse Problems and Quantification of Uncertainty
Large-Scale Inverse Problems and Quantification of Uncertainty

Large-Scale Inverse Problems and Quantification of Uncertainty

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: Brings together the perspectives of researchers in areas of inverse problems and data assimilation. Assesses the current state-of-the-art and identify needs and opportunities for future research. Focuses on the computational methods used to analyze and simulate inverse problems. Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.

Table of Contents:
1 Introduction 1.1 Introduction 1.2 Statistical Methods 1.3 Approximation Methods 1.4 Kalman Filtering 1.5 Optimization 2 A Primer of Frequentist and Bayesian Inference in Inverse Problems 2.1 Introduction 2.2 Prior Information and Parameters: What do you know, and what do you want to know? 2.3 Estimators: What can you do with what you measure? 2.4 Performance of estimators: How well can you do? 2.5 Frequentist performance of Bayes estimators for a BNM 2.6 Summary Bibliography 3 Subjective Knowledge or Objective Belief? An Oblique Look to Bayesian Methods 3.1 Introduction 3.2 Belief, information and probability 3.3 Bayes' formula and updating probabilities 3.4 Computed examples involving hypermodels 3.5 Dynamic updating of beliefs 3.6 Discussion Bibliography 4 Bayesian and Geostatistical Approaches to Inverse Problems 4.1 Introduction 4.2 The Bayesian and Frequentist Approaches 4.3 Prior Distribution 4.4 A Geostatistical Approach 4.5 Concluding Bibliography 5 Using the Bayesian Framework to Combine Simulations and Physical Observations for Statistical Inference 5.1 Introduction 5.2 Bayesian Model Formulation  5.3 Application: Cosmic Microwave Background 5.4 Discussion Bibliography 6 Bayesian Partition Models for Subsurface Characterization 6.1 Introduction 6.2 Model equations and problem setting 6.3 Approximation of the response surface using the Bayesian Partition Model and two-stage MCMC 6.4 Numerical results 6.5 Conclusions Bibliography 7 Surrogate and reduced-order modeling: a comparison of approaches for large-scale statistical inverse problems 7.1 Introduction 7.2 Reducing the computational cost of solving statistical inverse problems 7.3 General formulation 7.4 Model reduction 7.5 Stochastic spectral methods 7.6 Illustrative example 7.7 Conclusions Bibliography 8 Reduced basis approximation and a posteriori error estimation for parametrized parabolic PDEs; Application to real-time Bayesian parameter estimation 8.1 Introduction 8.2 Linear Parabolic Equations 8.3 Bayesian Parameter Estimation 8.4 Concluding Remarks Bibliography 9 Calibration and Uncertainty Analysis for Computer Simulations with Multivariate Output 9.1 Introduction 9.2 Gaussian Process Models 9.3 Bayesian Model Calibration 9.4 Case Study: Thermal Simulation of Decomposing Foam 9.5 Conclusions Bibliography 10 Bayesian Calibration of Expensive Multivariate Computer Experiments 10.1 Calibration of computer experiments 10.2 Principal component emulation  10.3 Multivariate calibration 10.4 Summary Bibliography 11 The Ensemble Kalman Filter and Related Filters 11.1 Introduction 11.2 Model Assumptions 11.3 The Traditional Kalman Filter (KF) 11.4 The Ensemble Kalman Filter (EnKF) 11.5 The Randomized Maximum Likelihood Filter (RMLF) 11.6 The Particle Filter (PF) 11.7 Closing Remarks 11.8 Appendix A: Properties of the EnKF Algorithm 11.9 Appendix B: Properties of the RMLF Algorithm Bibliography 12 Using the ensemble Kalman Filter for history matching and uncertainty quantification of complex reservoir models 12.1 Introduction 12.2 Formulation and solution of the inverse problem 12.3 EnKF history matching workflow 12.4 Field Case 12.5 Conclusion Bibliography 13 Optimal Experimental Design for the Large-Scale Nonlinear Ill-posed Problem of Impedance Imaging 13.1 Introduction 13.2 Impedance Tomography 13.3 Optimal Experimental Design - Background 13.4 Optimal Experimental Design for Nonlinear Ill-Posed Problems 13.5 Optimization Framework 13.6 Numerical Results 13.7 Discussion and Conclusions Bibliography 14 Solving Stochastic Inverse Problems: A Sparse Grid Collocation Approach 14.1 Introduction 14.2 Mathematical developments 14.3 Numerical Examples 14.4 Summary Bibliography 15 Uncertainty analysis for seismic inverse problems: two practical examples 15.1 Introduction 15.2 Traveltime inversion for velocity determination. 15.3 Prestack stratigraphic inversion 15.4 Conclusions Bibliography 16 Solution of inverse problems using discrete ODE adjoints 16.1 Introduction 16.2 Runge-Kutta Methods 16.3 Adaptive Steps 16.4 Linear Multistep Methods 16.5 Numerical Results 16.6 Application to Data Assimilation 16.7 Conclusions Bibliography TBD


Best Sellers


Product Details
  • ISBN-13: 9781119958109
  • Publisher: John Wiley & Sons Inc
  • Binding: Digital (delivered electronically)
  • No of Pages: 400
  • ISBN-10: 1119958105
  • Publisher Date: 24 Jun 2011
  • Language: English


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Large-Scale Inverse Problems and Quantification of Uncertainty
John Wiley & Sons Inc -
Large-Scale Inverse Problems and Quantification of Uncertainty
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Large-Scale Inverse Problems and Quantification of Uncertainty

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!