Introduction to Optimization-Based Decision-Making
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Introduction to Optimization-Based Decision-Making
Introduction to Optimization-Based Decision-Making

Introduction to Optimization-Based Decision-Making

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

The large and complex challenges the world is facing, the growing prevalence of huge data sets, and the new and developing ways for addressing them (artificial intelligence, data science, machine learning, etc.), means it is increasingly vital that academics and professionals from across disciplines have a basic understanding of the mathematical underpinnings of effective, optimized decision-making. Without it, decision makers risk being overtaken by those who better understand the models and methods, that can best inform strategic and tactical decisions. Introduction to Optimization-Based Decision-Making provides an elementary and self-contained introduction to the basic concepts involved in making decisions in an optimization-based environment. The mathematical level of the text is directed to the post-secondary reader, or university students in the initial years. The prerequisites are therefore minimal, and necessary mathematical tools are provided as needed. This lean approach is complemented with a problem-based orientation and a methodology of generalization/reduction. In this way, the book can be useful for students from STEM fields, economics and enterprise sciences, social sciences and humanities, as well as for the general reader interested in multi/trans-disciplinary approaches. Features Collects and discusses the ideas underpinning decision-making through optimization tools in a simple and straightforward manner Suitable for an undergraduate course in optimization-based decision-making, or as a supplementary resource for courses in operations research and management science Self-contained coverage of traditional and more modern optimization models, while not requiring a previous background in decision theory

Table of Contents:
1. First Notes on Optimization for Decision Support. 1.1. Introduction. 1.2. First Steps. 1.3. Introducing Proportionality. 1.4. A Non-Proportional Instance. 1.5. An Enlarged and Non-Proportional Instance. 1.6. Concluding Remarks. 2. Linear Algebra. 2.1. Introduction. 2.2. Gauss Elimination on the Linear System. 2.3. Gauss Elimination with the Augmented Matrix. 2.4. Gauss-Jordan and the Inverse Matrix. 2.5. Cramer’s Rule and Determinants. 2.6. Concluding Remarks. 3. Linear Programming Basics. 3.1. Introduction. 3.2. Graphical Approach. 3.3. Algebraic Form. 3.4. Tableau Form. 3.5. Matrix Form. 3.6. Updating the Inverse Matrix. 3.7. Concluding Remarks. 4. Duality. 4.1. Introduction. 4.2. Primal-Dual Transformations. 4.3. Dual Simplex Method. 4.4. Duality Properties. 4.5. Duality and Economic Interpretation. 4.6. A First Approach to Optimality Analysis. 4.7. Concluding Remarks. 5. Calculus Optimization. 5.1. Introduction. 5.2. Constrained Optimization with Lagrange Multipliers. 5.3. Generalization of the Constrained Optimization Case. 5.4. Lagrange Multipliers for the Furniture Factory Problem. 5.5. Concluding Remarks. 6. Optimality Analysis. 6.1. Introduction. 6.2. Revising LP Simplex. 6.3. Sensitivity Analysis. 6.4. Parametric Analysis. 6.5. Concluding Remarks. 7. Integer Linear Programming. 7.1. Introduction. 7.2. Solving Integer Linear Programming Problems. 7.3. Modeling with Binary Variables. 7.4. Solving Binary Integer Programming Problems. 7.5. Concluding Remarks. 8. Game Theory. 8.1. Introduction. 8.2. Constant-Sum Game. 8.3. Zero-Sum Game. 8.4. Mixed Strategies - LP Approach. 8.5. Dominant Strategies. 8.6. Concluding Remarks. 9. Decision Making Under Uncertainty. 9.1. Introduction. 9.2. Multiple Criteria and Decision Maker Values. 9.3. Capacity Expansion for the Furniture Factory. 9.4. A Comparison Analysis. 9.5. Concluding Remarks. 10. Robust Optimization. 10.1. Introduction. 10.2. Notes on Stochastic Programming. 10.3. Robustness Promotion on Models and Solutions. 10.4. Models Generalization onto Robust Optimization. 10.5. Concluding Remarks. Selected References


Best Sellers


Product Details
  • ISBN-13: 9781351778701
  • Publisher: Taylor & Francis Ltd
  • Binding: Digital (delivered electronically)
  • No of Pages: 241
  • ISBN-10: 1351778706
  • Publisher Date: 19 Dec 2021
  • Language: English
  • No of Pages: 263


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Introduction to Optimization-Based Decision-Making
Taylor & Francis Ltd -
Introduction to Optimization-Based Decision-Making
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Introduction to Optimization-Based Decision-Making

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!