An Introduction to Metric Spaces
Home > Mathematics and Science Textbooks > Mathematics > Geometry > An Introduction to Metric Spaces
An Introduction to Metric Spaces

An Introduction to Metric Spaces

|
     0     
5
4
3
2
1




International Edition


About the Book

This book serves as a textbook for an introductory course in metric spaces for undergraduate or graduate students. The goal is to present the basics of metric spaces in a natural and intuitive way and encourage students to think geometrically while actively participating in the learning of this subject. In this book, the authors illustrated the strategy of the proofs of various theorems that motivate readers to complete them on their own. Bits of pertinent history are infused in the text, including brief biographies of some of the central players in the development of metric spaces. The textbook is divided into seven chapters that contain the main materials on metric spaces; namely, introductory concepts, completeness, compactness, connectedness, continuous functions and metric fixed point theorems with applications. Some of the noteworthy features of this book include · Diagrammatic illustrations that encourage readers to think geometrically · Focus on systematic strategy to generate ideas for the proofs of theorems · A wealth of remarks, observations along with a variety of exercises · Historical notes and brief biographies appearing throughout the text

Table of Contents:
Contents Preface ix A Note to the Reader xiii Authors xv 1 Set Theory 1 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 The empty set . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Operations on sets . . . . . . . . . . . . . . . . . . . . 5 1.1.3 Uniqueness of the empty set . . . . . . . . . . . . . . . 9 1.1.4 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.5 Cartesian products . . . . . . . . . . . . . . . . . . . . 9 1.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.1 Types of relations . . . . . . . . . . . . . . . . . . . . 12 1.2.2 Equivalence relations . . . . . . . . . . . . . . . . . . . 13 1.2.3 Partition of sets . . . . . . . . . . . . . . . . . . . . . 15 1.2.4 Partial order relations . . . . . . . . . . . . . . . . . . 16 1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.1 Composition of functions . . . . . . . . . . . . . . . . 24 1.3.2 Inverse of a function . . . . . . . . . . . . . . . . . . . 26 1.3.3 Images of sets under functions . . . . . . . . . . . . . 32 1.3.4 Inverse images of sets under functions . . . . . . . . . 36 1.4 Countability of Sets . . . . . . . . . . . . . . . . . . . . . . . 39 1.4.1 Finite sets . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.4.2 Countable sets . . . . . . . . . . . . . . . . . . . . . . 44 Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2 Metric Spaces 55 2.1 Review of Real Number System and Absolute Value . . . . . 55 2.2 Young, H¨older, andMinkowski Inequalities . . . . . . . . . . 57 2.3 Notion ofMetric Space . . . . . . . . . . . . . . . . . . . . . 64 2.4 Open Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.4.1 Subspace topology . . . . . . . . . . . . . . . . . . . . 96 2.4.2 Product topology . . . . . . . . . . . . . . . . . . . . . 97 2.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 2.6 Interior, Exterior, and Boundary Points . . . . . . . . . . . . 101 2.7 Limit and Cluster Points . . . . . . . . . . . . . . . . . . . . 104 2.8 Bounded Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 110 2.9 Distance Between Sets . . . . . . . . . . . . . . . . . . . . . 112 2.10 EquivalentMetrics . . . . . . . . . . . . . . . . . . . . . . . . 115 Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 125 3 Complete Metric Spaces 129 3.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 3.1.1 Subsequences . . . . . . . . . . . . . . . . . . . . . . . 130 3.2 Convergence of Sequence . . . . . . . . . . . . . . . . . . . . 131 3.3 CompleteMetric Spaces . . . . . . . . . . . . . . . . . . . . . 139 3.4 Completion ofMetric Spaces . . . . . . . . . . . . . . . . . . 143 3.4.1 Construction of the set Z . . . . . . . . . . . . . . . . 145 3.4.2 Embedding X in Z . . . . . . . . . . . . . . . . . . . . 147 3.4.3 Proving Z is complete . . . . . . . . . . . . . . . . . . 147 3.4.4 Uniqueness of extension up to isometry . . . . . . . . 148 3.5 Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 149 3.5.1 Category of sets . . . . . . . . . . . . . . . . . . . . . 149 3.5.2 Baire category theorem . . . . . . . . . . . . . . . . . 151 3.5.3 Applications of Baire category theorem . . . . . . . . 153 Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4 Compact Metric Spaces 161 4.1 Open Cover and Compact Sets . . . . . . . . . . . . . . . . . 161 4.2 General Properties of Compact Sets . . . . . . . . . . . . . . 165 4.3 Sufficient Conditions for Compactness . . . . . . . . . . . . . 169 4.4 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . 172 4.5 Compactness: Characterizations . . . . . . . . . . . . . . . . 174 Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 180 5 Connected Spaces 183 5.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . 183 5.1.1 Connected subsets . . . . . . . . . . . . . . . . . . . . 185 5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 5.3 Totally Disconnected Spaces . . . . . . . . . . . . . . . . . . 192 Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 6 Continuity 195 6.1 Continuity of Real Valued Functions . . . . . . . . . . . . . . 195 6.2 Continuous Functions in ArbitraryMetric Spaces . . . . . . 197 6.2.1 Equivalent definitions of continuity and other characterizations . . . . . . . . . . . . . . . . . . . . . 202 6.2.2 Results on continuity . . . . . . . . . . . . . . . . . . . 210 6.3 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . 217 6.4 Continuous Functions on Compact Spaces . . . . . . . . . . . 224 6.5 Continuous Functions on Connected Spaces . . . . . . . . . . 229 6.5.1 Path connectedness . . . . . . . . . . . . . . . . . . . . 237 6.6 Equicontinuity and Arzela-Ascoli’s Theorem . . . . . . . . . 242 6.7 Open and ClosedMaps . . . . . . . . . . . . . . . . . . . . . 245 6.8 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 246 Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 252 7 Banach Fixed Point Theorem and Its Applications 255 7.1 Banach Contraction Theorem . . . . . . . . . . . . . . . . . 255 7.2 Applications of Banach Contraction Principle . . . . . . . . . 260 7.2.1 Root finding problem . . . . . . . . . . . . . . . . . . 260 7.2.2 Solution of systemof linear algebraic equations . . . . 261 7.2.3 Picard existence theorem for differential equations . . 264 7.2.4 Solutions of integral equations . . . . . . . . . . . . . 267 7.2.5 Solutions of initial value and boundary value problems . . . . . . . . . . . . . . . . . . . . . . . . . 271 7.2.6 Implicit function theorem . . . . . . . . . . . . . . . . 273 Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 276 Appendix A 277 Bibliography 281 Index 283


Best Sellers


Product Details
  • ISBN-13: 9780367493493
  • Publisher: Taylor & Francis Ltd
  • Publisher Imprint: Chapman & Hall/CRC
  • Height: 234 mm
  • No of Pages: 302
  • Width: 156 mm
  • ISBN-10: 0367493497
  • Publisher Date: 15 Jul 2022
  • Binding: Paperback
  • Language: English
  • Weight: 476 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
An Introduction to Metric Spaces
Taylor & Francis Ltd -
An Introduction to Metric Spaces
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

An Introduction to Metric Spaces

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!