Handbook of Power Systems Engineering with Power Electronics Applications
Home > Science, Technology & Agriculture > Energy technology and engineering > Handbook of Power Systems Engineering with Power Electronics Applications
Handbook of Power Systems Engineering with Power Electronics Applications

Handbook of Power Systems Engineering with Power Electronics Applications

|
     0     
5
4
3
2
1




International Edition


About the Book

Formerly known as Handbook of Power System Engineering, this second edition provides rigorous revisions to the original treatment of systems analysis together with a substantial new four-chapter section on power electronics applications. Encompassing a whole range of equipment, phenomena, and analytical approaches, this handbook offers a complete overview of power systems and their power electronics applications, and presents a thorough examination of the fundamental principles, combining theories and technologies that are usually treated in separate specialised fields, in a single unified hierarchy. Key features of this new edition: Updates throughout the entire book with new material covering applications to current topics such as brushless generators, speed adjustable pumped storage hydro generation, wind generation, small-hydro generation, solar generation,  DC-transmission, SVC, SVG (STATCOM), FACTS, active-filters, UPS and advanced railway traffic applications Theories of electrical phenomena ranging from DC and power frequency to lightning-/switching-surges, and insulation coordination now with reference to IEC Standards 2010 New chapters presenting advanced theories and technologies of power electronics circuits and their control theories in combination with various characteristics of power systems as well as induction-generator/motor driving systems Practical engineering technologies of generating plants, transmission lines, sub-stations, load systems and their combined network that includes schemes of high voltage primary circuits, power system control and protection A comprehensive reference for those wishing to gain knowledge in every aspect of power system engineering, this book is suited to practising engineers in power electricity-related industries and graduate level power engineering students.

Table of Contents:
PREFACE xxi ACKNOWLEDGEMENTS xxiii ABOUT THE AUTHOR xxv INTRODUCTION xxvii 1 OVERHEAD TRANSMISSION LINES AND THEIR CIRCUIT CONSTANTS 1 1.1 Overhead Transmission Lines with LR Constants 1 1.2 Stray Capacitance of Overhead Transmission Lines 10 1.3 Working Inductance and Working Capacitance 18 1.4 Supplement: Proof of Equivalent Radius req () for a Multi-bundled Conductor 25 2 SYMMETRICAL COORDINATE METHOD (SYMMETRICAL COMPONENTS) 29 2.1 Fundamental Concept of Symmetrical Components 29 2.2 Definition of Symmetrical Components 31 2.3 Conversion of Three-phase Circuit into Symmetrical Coordinated Circuit 34 2.4 Transmission Lines by Symmetrical Components 36 2.5 Typical Transmission Line Constants 46 2.6 Generator by Symmetrical Components (Easy Description) 49 2.7 Description of Three-phase Load Circuit by Symmetrical Components 52 3 FAULT ANALYSIS BY SYMMETRICAL COMPONENTS 53 3.1 Fundamental Concept of Symmetrical Coordinate Method 53 3.2 Line-to-ground Fault (Phase a to Ground Fault: 1fG) 54 3.3 Fault Analysis at Various Fault Modes 59 3.4 Conductor Opening 59 4 FAULT ANALYSIS OF PARALLEL CIRCUIT LINES (INCLUDING SIMULTANEOUS DOUBLE CIRCUIT FAULT) 69 4.1 Two-phase Circuit and its Symmetrical Coordinate Method 69 4.2 Double Circuit Line by Two-phase Symmetrical Transformation 73 4.3 Fault Analysis of Double Circuit Line (General Process) 77 4.4 Single Circuit Fault on the Double Circuit Line 80 4.5 Double Circuit Fault at Single Point f 81 4.6 Simultaneous Double Circuit Faults at Different Points f, F on the Same Line 85 5 PER UNIT METHOD AND INTRODUCTION OF TRANSFORMER CIRCUIT 91 5.1 Fundamental Concept of the PU Method 91 5.2 PU Method for Three-phase Circuits 97 5.3 Three-phase Three-winding Transformer, its Symmetrical Components Equations, and the Equivalent Circuit 99 5.4 Base Quantity Modification of Unitized Impedance 110 5.5 Autotransformer 111 5.6 Numerical Example to Find the Unitized Symmetrical Equivalent Circuit 112 5.7 Supplement: Transformation from Equation 5.18 to Equation 5.19 122 6 THE ab0 COORDINATE METHOD (CLARKE COMPONENTS) AND ITS APPLICATION 127 6.1 Definition of ab0 Coordinate Method (ab0 Components) 127 6.2 Interrelation Between ab0 Components and Symmetrical Components 130 6.3 Circuit Equation and Impedance by the ab0 Coordinate Method 134 6.4 Three-phase Circuit in ab0 Components 134 6.5 Fault Analysis by ab0 Components 139 7 SYMMETRICAL AND ab0 COMPONENTS AS ANALYTICAL TOOLS FOR TRANSIENT PHENOMENA 145 7.1 The Symbolic Method and its Application to Transient Phenomena 145 7.2 Transient Analysis by Symmetrical and ab0 Components 147 7.3 Comparison of Transient Analysis by Symmetrical and ab0 Components 150 8 NEUTRAL GROUNDING METHODS 153 8.1 Comparison of Neutral Grounding Methods 153 8.2 Overvoltages on the Unfaulted Phases Caused by a Line-to-ground fault 158 8.3 Arc-suppression Coil (Petersen Coil) Neutral Grounded Method 159 8.4 Possibility of Voltage Resonance 160 9 VISUAL VECTOR DIAGRAMS OF VOLTAGES AND CURRENTS UNDER FAULT CONDITIONS 169 9.1 Three-phase Fault: 3fS, 3fG (Solidly Neutral Grounding System, High-resistive Neutral Grounding System) 169 9.2 Phase b–c Fault: 2fS (for Solidly Neutral Grounding System, High-resistive Neutral Grounding System) 170 9.3 Phase a to Ground Fault: 1fG (Solidly Neutral Grounding System) 173 9.4 Double Line-to-ground (Phases b and c) Fault: 2fG (Solidly Neutral Grounding System) 175 9.5 Phase a Line-to-ground Fault: 1fG (High-resistive Neutral Grounding System) 178 9.6 Double Line-to-ground (Phases b and c) Fault: 2fG (High-resistive Neutral Grounding System) 180 10 THEORY OF GENERATORS 183 10.1 Mathematical Description of a Synchronous Generator 183 10.2 Introduction of d–q–0 Method (d–q–0 Components) 191 10.3 Transformation of Generator Equations from a–b–c to d–q–0 Domain 195 10.4 Generator Operating Characteristics and its Vector Diagrams on d- and q-axes Plane 208 10.5 Transient Phenomena and the Generator’s Transient Reactances 211 10.6 Symmetrical Equivalent Circuits of Generators 213 10.7 Laplace-transformed Generator Equations and the Time Constants 220 10.8 Measuring of Generator Reactances 224 10.9 Relations Between the d–q–0 and a–b–0 Domains 228 10.10 Detailed Calculation of Generator Short-circuit Transient Current under Load Operation 228 10.11 Supplement 234 11 APPARENT POWER AND ITS EXPRESSION IN THE 0–1–2 AND d–q–0 DOMAINS 241 11.1 Apparent Power and its Symbolic Expression for Arbitrary Waveform Voltages and Currents 241 11.2 Apparent Power of a Three-phase Circuit in the 0–1–2 Domain 243 11.3 Apparent Power in the d–q–0 Domain 246 12 GENERATING POWER AND STEADY-STATE STABILITY 251 12.1 Generating Power and the P–d and Q–d Curves 251 12.2 Power Transfer Limit between a Generator and a Power System Network 254 12.3 Supplement: Derivation of Equation 12.17 from Equations 12.15st and 12.16 261 13 THE GENERATOR AS ROTATING MACHINERY 263 13.1 Mechanical (Kinetic) Power and Generating (Electrical) Power 263 13.2 Kinetic Equation of the Generator 265 13.3 Mechanism of Power Conversion from Rotor Mechanical Power to Stator Electrical Power 268 13.4 Speed Governors, the Rotating Speed Control Equipment for Generators 274 14 TRANSIENT/DYNAMIC STABILITY, P–Q–V CHARACTERISTICS AND VOLTAGE STABILITY OF A POWER SYSTEM 281 14.1 Steady-state Stability, Transient Stability, Dynamic Stability 281 14.2 Mechanical Acceleration Equation for the Two-generator System and Disturbance Response 282 14.3 Transient Stability and Dynamic Stability (Case Study) 284 14.4 Four-terminal Circuit and the Pd Curve under Fault Conditions and Operational Reactance 286 14.5 PQV Characteristics and Voltage Stability (Voltage Instability Phenomena) 290 14.6 Supplement 1: Derivation of DV/DP, DV/DQ Sensitivity Equation (Equation 14.20 from Equation 14.19) 298 14.7 Supplement 2: Derivation of Power Circle Diagram Equation (Equation 14.31 from Equation 14.18 s) 299 15 GENERATOR CHARACTERISTICS WITH AVR AND STABLE OPERATION LIMIT 301 15.1 Theory of AVR, and Transfer Function of Generator System with AVR 301 15.2 Duties of AVR and Transfer Function of Generator + AVR 305 15.3 Response Characteristics of Total System and Generator Operational Limit 308 15.4 Transmission Line Charging by Generator with AVR 312 15.5 Supplement 1: Derivation of ed (s), eq(s) as Function of ef (s) (Equation 15.9 from Equations 15.7 and 15.8) 313 15.6 Supplement 2: Derivation of eG(s) as Function of ef (s) (Equation 15.10 from Equations 15.8 and 15.9) 314 16 OPERATING CHARACTERISTICS AND THE CAPABILITY LIMITS OF GENERATORS 319 16.1 General Equations of Generators in Terms of p–q Coordinates 319 16.2 Rating Items and the Capability Curve of the Generator 322 16.3 Leading Power-factor (Under-excitation Domain) Operation, and UEL Function by AVR 328 16.4 V–Q (Voltage and Reactive Power) Control by AVR 334 16.5 Thermal Generators’ Weak Points (Negative-sequence Current, Higher Harmonic Current, Shaft-torsional Distortion) 337 16.6 General Description of Modern Thermal/Nuclear TG Unit 346 16.7 Supplement: Derivation of Equation 16.14 from Equation 16.9 351 17 R–X COORDINATES AND THE THEORY OF DIRECTIONAL DISTANCE RELAYS 353 17.1 Protective Relays, Their Mission and Classification 353 17.2 Principle of Directional Distance Relays and R–X Coordinates Plane 355 17.3 Impedance Locus in R–X Coordinates in Case of a Fault (under No-load Condition) 358 17.4 Impedance Locus under Normal States and Step-out Condition 365 17.5 Impedance Locus under Faults with Load Flow Conditions 370 17.6 Loss of Excitation Detection by DZ-Relays 371 17.7 Supplement 1: The Drawing Method for the Locus () of Equation 17.22 372 17.8 Supplement 2: The Drawing Method for () of Equation 17.24 374 18 TRAVELLING-WAVE (SURGE) PHENOMENA 379 18.1 Theory of Travelling-wave Phenomena along Transmission Lines (Distributed-constants Circuit) 379 18.2 Approximation of Distributed-constants Circuit and Accuracy of Concentrated-constants Circuit 390 18.3 Behaviour of Travelling Wave at a Transition Point 391 18.4 Surge Overvoltages and their Three Different and Confusing Notations 395 18.5 Behaviour of Travelling Waves at a Lightning-strike Point 396 18.6 Travelling-wave Phenomena of Three-phase Transmission Line 398 18.7 Line-to-ground and Line-to-line Travelling Waves 400 18.8 The Reflection Lattice and Transient Behaviour Modes 402 18.9 Supplement 1: General Solution Equation 18.10 for Differential Equation 18.9 405 18.10 Supplement 2: Derivation of Equation 18.19 from Equation 18.18 407 19 SWITCHING SURGE PHENOMENA BY CIRCUIT-BREAKERS AND LINE SWITCHES 411 19.1 Transient Calculation of a Single-Phase Circuit by Breaker Opening 411 19.2 Calculation of Transient Recovery Voltages Across a Breaker's Three Poles by 3fS Fault Tripping 420 19.3 Fundamental Concepts of High-voltage Circuit-breakers 430 19.4 Current Tripping by Circuit-breakers: Actual Phenomena 434 19.5 Overvoltages Caused by Breaker Closing (Close-switching Surge) 444 19.6 Resistive Tripping and Resistive Closing by Circuit-breakers 447 19.7 Switching Surge Caused by Line Switches (Disconnecting Switches) 453 19.8 Supplement 1: Calculation of the Coefficients k1k4 of Equation 19.6 455 19.9 Supplement 2: Calculation of the Coefficients k1k6 of Equation 19.17 455 20 OVERVOLTAGE PHENOMENA 459 20.1 Classification of Overvoltage Phenomena 459 20.2 Fundamental (Power) Frequency Overvoltages (Non-resonant Phenomena) 459 20.3 Lower Frequency Harmonic Resonant Overvoltages 463 20.4 Switching Surges 467 20.5 Overvoltage Phenomena by Lightning Strikes 469 21 INSULATION COORDINATION 475 21.1 Overvoltages as Insulation Stresses 475 21.2 Fundamental Concept of Insulation Coordination 481 21.3 Countermeasures on Transmission Lines to Reduce Overvoltages and Flashover 483 21.4 Overvoltage Protection at Substations 488 21.5 Insulation Coordination Details 500 21.6 Transfer Surge Voltages Through the Transformer, and Generator Protection 511 21.7 Internal High-frequency Voltage Oscillation of Transformers Caused by Incident Surge 520 21.8 Oil-filled Transformers Versus Gas-filled Transformers 526 21.9 Supplement: Proof that Equation 21.21 is the Solution of Equation 21.20 529 22 WAVEFORM DISTORTION AND LOWER ORDER HARMONIC RESONANCE 531 22.1 Causes and Influences of Waveform Distortion 531 22.2 Fault Current Waveform Distortion Caused on Cable Lines 534 23 POWER CABLES AND POWER CABLE CIRCUITS 541 23.1 Power Cables and Their General Features 541 23.2 Distinguishing Features of Power Cable 545 23.3 Circuit Constants of Power Cables 550 23.4 Metallic Sheath and Outer Covering 557 23.5 Cross-bonding Metallic-shielding Method 559 23.6 Surge Voltages: Phenomena Travelling Through a Power Cable 563 23.7 Surge Voltages Phenomena on Cable and Overhead Line Jointing Terminal 566 23.8 Surge Voltages at Cable End Terminal Connected to GIS 568 24 APPROACHES FOR SPECIAL CIRCUITS 573 24.1 On-load Tap-changing Transformer (LTC Transformer) 573 24.2 Phase-shifting Transformer 575 24.3 Woodbridge Transformer and Scott Transformer 579 24.4 Neutral Grounding Transformer 583 24.5 Mis-connection of Three-phase Orders 585 25 THEORY OF INDUCTION GENERATORS AND MOTORS 591 25.1 Introduction of Induction Motors and Their Driving Control 591 25.2 Theory of Three-phase Induction Machines (IM) with Wye-connected Rotor Windings 592 25.3 Squirrel-cage Type Induction Motors 612 25.4 Supplement 1: Calculation of Equations (25.17), (25.18), and (25.19) 627 26 POWER ELECTRONIC DEVICES AND THE FUNDAMENTAL CONCEPT OF SWITCHING 629 26.1 Power Electronics and the Fundamental Concept 629 26.2 Power Switching by Power Devices 630 26.3 Snubber Circuit 633 26.4 Voltage Conversion by Switching 635 26.5 Power Electronic Devices 635 26.6 Mathematical Backgrounds for Power Electronic Application Analysis 643 27 POWER ELECTRONIC CONVERTERS 651 27.1 AC to DC Conversion: Rectifier by a Diode 651 27.2 AC to DC Controlled Conversion: Rectifier by Thyristors 661 27.3 DC to DC Converters (DC to DC Choppers) 671 27.4 DC to AC Inverters 680 27.5 PWM (Pulse Width Modulation) Control of Inverters 687 27.6 AC to AC Converter (Cycloconverter) 691 27.7 Supplement: Transformer Core Flux Saturation (Flux Bias Caused by DC Biased Current Component) 692 28 POWER ELECTRONICS APPLICATIONS IN UTILITY POWER SYSTEMS AND SOME INDUSTRIES 695 28.1 Introduction 695 28.2 Motor Drive Application 695 28.3 Generator Excitation System 704 28.4 (Double-fed) Adjustable Speed Pumped Storage Generator-motor Unit 706 28.5 Wind Generation 710 28.6 Small Hydro Generation 715 28.7 Solar Generation (Photovoltaic Generation) 716 28.8 Static Var Compensators (SVC: Thyristor Based External Commutated Scheme) 717 28.9 Active Filters 726 28.10 High-Voltage DC Transmission (HVDC Transmission) 734 28.11 FACTS (Flexible AC Transmission Systems) Technology 736 28.12 Railway Applications 741 28.13 UPSs (Uninterruptible Power Supplies) 745 APPENDIX A – MATHEMATICAL FORMULAE 747 APPENDIX B – MATRIX EQUATION FORMULAE 751 ANALYTICAL METHODS INDEX 757 COMPONENTS INDEX 759 SUBJECT INDEX 763


Best Sellers


Product Details
  • ISBN-13: 9781119952848
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 252 mm
  • No of Pages: 800
  • Returnable: N
  • Weight: 1477 gr
  • ISBN-10: 1119952840
  • Publisher Date: 07 Dec 2012
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 39 mm
  • Width: 175 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Handbook of Power Systems Engineering with Power Electronics Applications
John Wiley & Sons Inc -
Handbook of Power Systems Engineering with Power Electronics Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Handbook of Power Systems Engineering with Power Electronics Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!