Geometry of the Generalized Geodesic Flow and Inverse Spectral Problems
Home > Mathematics and Science Textbooks > Mathematics > Geometry > Differential and Riemannian geometry > Geometry of the Generalized Geodesic Flow and Inverse Spectral Problems
Geometry of the Generalized Geodesic Flow and Inverse Spectral Problems

Geometry of the Generalized Geodesic Flow and Inverse Spectral Problems

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

This book is a new edition of a title originally published in1992. No other book has been published that treats inverse spectral and inverse scattering results by using the so called Poisson summation formula and the related study of singularities. This book presents these in a closed and comprehensive form, and the exposition is based on a combination of different tools and results from dynamical systems, microlocal analysis, spectral and scattering theory. The content of the first edition is still relevant, however the new edition will include several new results established after 1992; new text will comprise about a third of the content of the new edition. The main chapters in the first edition in combination with the new chapters will provide a better and more comprehensive presentation of importance for the applications inverse results. These results are obtained by modern mathematical techniques which will be presented together in order to give the readers the opportunity to completely understand them. Moreover, some basic generic properties established by the authors after the publication of the first edition establishing the wide range of applicability of the Poison relation will be presented for first time in the new edition of the book.

Table of Contents:
Preface ix 1 Preliminaries from differential topology and microlocal analysis 1 1.1 Spaces of jets and transversality theorems 1 1.2 Generalized bicharacteristics 5 1.3 Wave front sets of distributions 15 1.4 Boundary problems for the wave operator 23 1.5 Notes 25 2 Reflecting rays 26 2.1 Billiard ball map 26 2.2 Periodic rays for several convex bodies 31 2.3 The Poincare map 40 2.4 Scattering rays 49 2.5 Notes 56 3 Poisson relation for manifolds with boundary 57 3.1 Traces of the fundamental solutions of ◻ and ◻2 58 3.2 The distribution σ(t) 62 3.3 Poisson relation for convex domains 64 3.4 Poisson relation for arbitrary domains 71 3.5 Notes 81 4 Poisson summation formula for manifolds with boundary 82 4.1 Global parametrix for mixed problems 82 4.2 Principal symbol of FB 94 4.3 Poisson summation formula 103 4.4 Notes 117 5 Poisson relation for the scattering kernel 118 5.1 Representation of the scattering kernel 118 5.2 Location of the singularities of s(t, θ, ω) 127 5.3 Poisson relation for the scattering kernel 130 5.4 Notes 137 6 Generic properties of reflecting rays 139 6.1 Generic properties of smooth embeddings 139 6.2 Elementary generic properties of reflecting rays 145 6.3 Absence of tangent segments 155 6.4 Non-degeneracy of reflecting rays 160 6.5 Notes 172 7 Bumpy surfaces 173 7.1 Poincare maps for closed geodesics 173 7.2 Local perturbations of smooth surfaces 182 7.3 Non-degeneracy and transversality 191 7.4 Global perturbations of smooth surfaces 199 7.5 Notes 202 8 Inverse spectral results for generic bounded domains 204 8.1 Planar domains 204 8.2 Interpolating Hamiltonians 214 8.3 Approximations of closed geodesics by periodic reflecting rays 221 8.4 The Poisson relation for generic strictly convex domains 235 8.5 Notes 241 9 Singularities of the scattering kernel 242 9.1 Singularity of the scattering kernel for a non-degenerate (ω, θ)-ray 242 9.2 Singularities of the scattering kernel for generic domains 252 9.3 Glancing ω-rays 253 9.4 Generic domains in ℝ3 258 9.5 Notes 263 10 Scattering invariants for several strictly convex domains 264 10.1 Singularities of the scattering kernel for generic θ 264 10.2 Hyperbolicity of scattering trajectories 273 10.3 Existence of scattering rays and asymptotic of their sojourn times 281 10.4 Asymptotic of the coefficients of the main singularity 287 10.5 Notes 296 11 Poisson relation for the scattering kernel for generic directions 298 11.1 The Poisson relation for the scattering kernel 298 11.2 Generalized Hamiltonian flow 303 11.3 Invariance of the Hausdorff dimension 309 11.4 Further regularity of the generalized Hamiltonian flow 320 11.5 Proof of Proposition 11.1.2 325 11.6 Notes 336 12 Scattering kernel for trapping obstacles 337 12.1 Scattering rays with sojourn times tending to infinity 337 12.2 Scattering amplitude and the cut-off resolvent 343 12.3 Estimates for the scattering amplitude 347 12.4 Notes 350 13 Inverse scattering by obstacles 351 13.1 The scattering length spectrum and the generalized geodesic flow 351 13.2 Proof of Theorem 13.1.2 356 13.3 An example: star-shaped obstacles 363 13.4 Tangential singularities of scattering rays I 365 13.5 Tangential singularities of scattering rays II 368 13.6 Reflection points of scattering rays and winding numbers 374 13.7 Recovering the accessible part of an obstacle 380 13.8 Proof of Proposition 13.4.2 385 13.9 Notes 394 References 396 Topic Index 405 Symbol Index 409


Best Sellers


Product Details
  • ISBN-13: 9781119107668
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 226 mm
  • No of Pages: 432
  • Returnable: N
  • Weight: 680 gr
  • ISBN-10: 1119107660
  • Publisher Date: 13 Jan 2017
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 28 mm
  • Width: 158 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Geometry of the Generalized Geodesic Flow and Inverse Spectral Problems
John Wiley & Sons Inc -
Geometry of the Generalized Geodesic Flow and Inverse Spectral Problems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Geometry of the Generalized Geodesic Flow and Inverse Spectral Problems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!