Generative Adversarial Networks Projects
Home > Computing and Information Technology > Computer science > Artificial intelligence > Computer vision > Generative Adversarial Networks Projects: Build next-generation generative models using TensorFlow and Keras
Generative Adversarial Networks Projects: Build next-generation generative models using TensorFlow and Keras

Generative Adversarial Networks Projects: Build next-generation generative models using TensorFlow and Keras

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

Explore various Generative Adversarial Network architectures using the Python ecosystem Key Features Use different datasets to build advanced projects in the Generative Adversarial Network domain Implement projects ranging from generating 3D shapes to a face aging application Explore the power of GANs to contribute in open source research and projects Book DescriptionGenerative Adversarial Networks (GANs) have the potential to build next-generation models, as they can mimic any distribution of data. Major research and development work is being undertaken in this field since it is one of the rapidly growing areas of machine learning. This book will test unsupervised techniques for training neural networks as you build seven end-to-end projects in the GAN domain. Generative Adversarial Network Projects begins by covering the concepts, tools, and libraries that you will use to build efficient projects. You will also use a variety of datasets for the different projects covered in the book. The level of complexity of the operations required increases with every chapter, helping you get to grips with using GANs. You will cover popular approaches such as 3D-GAN, DCGAN, StackGAN, and CycleGAN, and you’ll gain an understanding of the architecture and functioning of generative models through their practical implementation. By the end of this book, you will be ready to build, train, and optimize your own end-to-end GAN models at work or in your own projects. What you will learn Train a network on the 3D ShapeNet dataset to generate realistic shapes Generate anime characters using the Keras implementation of DCGAN Implement an SRGAN network to generate high-resolution images Train Age-cGAN on Wiki-Cropped images to improve face verification Use Conditional GANs for image-to-image translation Understand the generator and discriminator implementations of StackGAN in Keras Who this book is forIf you’re a data scientist, machine learning developer, deep learning practitioner, or AI enthusiast looking for a project guide to test your knowledge and expertise in building real-world GANs models, this book is for you.

Table of Contents:
Table of Contents Introduction to Generative Adversarial Networks 3D-GAN - Generating Shapes Using GANs Face Aging Using Conditional GAN Generating Anime Characters Using DCGANs Using SRGANs to Generate Photo-Realistic Images StackGAN- Text to Photo-Realistic Image Synthesis CycleGAN- Turn Paintings into Photos Conditional GAN - Image-to-Image Translation Using Conditional Adversarial Networks Predicting the Future of GANs


Best Sellers


Product Details
  • ISBN-13: 9781789134193
  • Publisher: Packt Publishing Limited
  • Publisher Imprint: Packt Publishing Limited
  • Language: English
  • No of Pages: 316
  • ISBN-10: 1789134196
  • Publisher Date: 31 Jan 2019
  • Binding: Digital (delivered electronically)
  • No of Pages: 316
  • Sub Title: Build next-generation generative models using TensorFlow and Keras


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Generative Adversarial Networks Projects: Build next-generation generative models using TensorFlow and Keras
Packt Publishing Limited -
Generative Adversarial Networks Projects: Build next-generation generative models using TensorFlow and Keras
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Generative Adversarial Networks Projects: Build next-generation generative models using TensorFlow and Keras

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!